Download presentation
1
Angles of Polygons
2
Polygons can be CONCAVE or CONVEX
3
Concave and Convex Polygons
If a polygon has an indentation (or cave), the polygon is called a concave polygon. Any polygon that does not have an indentation is called a convex polygon. Any two points in the interior of a convex polygon can be connected by a line segment that does not cut or cross a side of the polygon. Concave polygon Convex polygon We will only be discussing CONCAVE polygons
4
Triangle Octagon Quadrilateral Nonagon Pentagon Decagon Dodecagon
Hexagon n-gon Heptagon Hendecagon
5
Important Terms A VERTEX is the point of intersection of two sides F A
CONSECUTIVE VERTICES are two endpoints of any side. F A B C D E A segment whose endpoints are two nonconsecutive vertices is called a DIAGONAL. Sides that share a vertex are called CONSECUTIVE SIDES.
7
Tear off two vertices….
8
Line up the 3 angles (all vertices touching)
10
A straight line = 180°
11
ALWAYS!!! Angle sum of a Triangle 180° <1 + <2 + <3 = 180° 2
12
Consider a Quadrilateral
What is the angle sum? <1 + <2 + <3 + <4 = ?
13
Quadrilateral Draw a diagonal…what do you get? Two triangles 2 3 5 1 4
6
14
Quadrilateral 180° 180° Each triangle = 180°
2 3 5 180° 180° 1 4 Therefore the two triangles together = 360° 6
15
Angle sum of a Quadrilateral
180° + 180° = 360°
16
Consider a Pentagon What is the angle sum?
17
Pentagon Draw the diagonals from 1 vertex How many triangles?
18
Angle sum of a Pentagon 180° 180° 180°
Draw the diagonals from 1 vertex 180° 180° 180°
19
Continue this process through Decagon
Draw the diagonals from 1 vertex
20
Continue this process through Decagon
Draw the diagonals from 1 vertex
21
What about a 52-gon? What is the angle sum? Can you find the pattern?
1 180° 2 360° 3 540° 4 720° 5 900° 6 1080°
22
Find the nth term 7 1260° 8 1440° n - 2 (n – 2)(180)
23
pentagon 5(20) - 5 m1 = = 95 Find m1. (4x + 15) 2 (5x - 5)
3 110 (5x - 5) (4x + 15) (8x - 10) m1 = 5(20) - 5 = 95 540 17x + 200= 540 17x = 340 5x x x = x = 20
24
More important terms Interior Angles
Exterior Angles the SUM of an interior angle and it’s corresponding exterior angle = 180o
25
Sums of Exterior Angles
1 2 3 4 5 6 180 180 180•3 = 540 180 Sum of Interior & Exterior Angles = 540 Sum of Interior Angles = 180 Sum of Exterior Angles = 540- 180= 360
26
Sums of Exterior Angles
180 180 180 180•4 = 720 180 Sum of Interior & Exterior Angles = 720 Sum of Interior Angles = 360 Sum of Exterior Angles = 720- 360= 360
27
Sums of Exterior Angles
Sum of Interior & Exterior Angles = 180•5 = 900 Sum of Interior Angles = 180•3 = 540 Sum of Exterior Angles = 360 900- 540=
28
What conclusion can you come up with regarding the exterior angle sum of a CONVEX n-polygon??
Sum of Interior & Exterior Angles = 180n Sum of Interior Angles = 180(n-2) = 180n - 360 Sum of Exterior Angles = 180n – (180n – 360)
29
The exterior angle sum of a CONVEX polygon =
360°
30
Important Terms EQUILATERAL - All sides are congruent
EQUIANGULAR - All angles are congruent REGULAR - All sides and angles are congruent
31
Interior Angle Measure of a REGULAR polygons
60° 90° Equilateral Triangle Angle measure = 60° Square Angle measure = 90° These are measurement that we generally know at this time, But what about the other regular polygons? How do we calculate the interior angle measure?
32
Pentagon 72° 108° 72° 108° 108° 72° 72° 72° 108° 108°
33
Interior Angle Measure of a REGULAR polygons
108° 120° Calculate by: Angle Sum Number of sides 135°
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.