Download presentation
Presentation is loading. Please wait.
Published byBarnaby Ford Modified over 9 years ago
1
T HE F UNDAMENTAL C OUNTING P RINCIPLE & P ERMUTATIONS
2
Computer Science, Statistics and Probability all involve counting techniques which are a branch of mathematics called combinatorics (ways to combine things). We'll be introducing this topic in this section. For dinner you have the following choices: soupsalad chicken hamburgerprawns icecream ENTREESMAINS DESSERTS How many different combinations of meals could you make? We'll build a tree diagram to show all of the choices.
3
soup salad chicken prawns hamburger chicken hamburger prawns ice cream Now to get all possible choices we follow each path. soup, chicken, ice cream soup, chicken, soup, prawns, ice cream soup, prawns, soup, hamburger, ice cream soup, hamburger, salad, chicken, ice cream salad, chicken, salad, prawns, ice cream salad, prawns, salad, hamburger, ice cream salad, hamburger, Notice the number of choices at each branch 2 choices 3 choices 2 choices We ended up with 12 possibilities 2 3 2 = 12
4
T HE F UNDAMENTAL C OUNTING P RINCIPLE & P ERMUTATIONS E SSENTIAL Q UESTION How is the counting principle applied to determine outcomes?
5
Multiplication Principle of Counting If a task consists of a sequence of choices in which there are p selections for the first choice, q selections for the second choice, r selections for the third choice, and so on, then the task of making these selections can be done in different ways. p q r p q r If we have 6 different shirts, 4 different pants, 5 different pairs of socks and 3 different pairs of shoes, how many different outfits could we wear? 6 4 5 3 = 360
6
T HE F UNDAMENTAL C OUNTING P RINCIPLE If you have 2 events: 1 event can occur m ways and another event can occur n ways, then the number of ways that both can occur is m*n Event 1 = 4 types of meats Event 2 = 3 types of bread How many diff types of sandwiches can you make? 4*3 = 12
7
3 OR MORE EVENTS : 3 events can occur m, n, & p ways, then the number of ways all three can occur is m*n*p 4 meats 3 cheeses 3 breads How many different sandwiches can you make? 4*3*3 = 36 sandwiches
8
At a restaurant at Cedar Point, you have the choice of 8 different entrees, 2 different salads, 12 different drinks, & 6 different deserts. How many different dinners (one choice of each) can you choose? 8*2*12*6= 1152 different dinners
9
F UNDAMENTAL C OUNTING P RINCIPLE WITH REPETITION Ohio Licenses plates have 3 #’s followed by 3 letters. 1. How many different licenses plates are possible if digits and letters can be repeated? There are 10 choices for digits and 26 choices for letters. 10*10*10*26*26*26= 17,576,000 different plates
10
H OW MANY PLATES ARE POSSIBLE IF DIGITS AND NUMBERS CANNOT BE REPEATED ? There are still 10 choices for the 1 st digit but only 9 choices for the 2 nd, and 8 for the 3 rd. For the letters, there are 26 for the first, but only 25 for the 2 nd and 24 for the 3 rd. 10*9*8*26*25*24= 11,232,000 plates
11
P HONE NUMBERS How many different 7 digit phone numbers are possible if the 1 st digit cannot be a 0 or 1? 8*10*10*10*10*10*10= 8,000,000 different numbers
12
T ESTING A multiple choice test has 10 questions with 4 answers each. How many ways can you complete the test? 4*4*4*4*4*4*4*4*4*4 = 4 10 = 1,048,576
13
U SING P ERMUTATIONS An ordering of n objects is a permutation of the objects.
14
T HERE ARE 6 PERMUTATIONS OF THE LETTERS A, B, &C ABC ACB BAC BCA CAB CBA You can use the Fundamental Counting Principle to determine the number of permutations of n objects. Like this ABC. There are 3 choices for 1 st # 2 choices for 2 nd # 1 choice for 3 rd. 3*2*1 = 6 ways to arrange the letters
15
I N GENERAL, THE # OF PERMUTATIONS OF N OBJECTS IS : n! = n*(n-1)*(n-2)* …
16
12 SKIERS… How many different ways can 12 skiers in the Olympic finals finish the competition? (if there are no ties) 12! = 12*11*10*9*8*7*6*5*4*3*2*1 = 479,001,600 different ways
17
F ACTORIAL WITH A CALCULATOR : Hit math then over, over, over. Option 4
18
B ACK TO THE FINALS IN THE O LYMPIC SKIING COMPETITION How many different ways can 3 of the skiers finish 1 st, 2 nd, & 3 rd (gold, silver, bronze) Any of the 12 skiers can finish 1 st, the any of the remaining 11 can finish 2 nd, and any of the remaining 10 can finish 3 rd. So the number of ways the skiers can win the medals is 12*11*10 = 1320
19
P ERMUTATION OF N OBJECTS TAKEN R AT A TIME n P r =
20
B ACK TO THE LAST PROBLEM WITH THE SKIERS It can be set up as the number of permutations of 12 objects taken 3 at a time. 12 P 3 = 12! = 12! = (12-3)!9! 12*11*10*9*8*7*6*5*4*3*2*1 = 9*8*7*6*5*4*3*2*1 12*11*10 = 1320
21
10 COLLEGES, YOU WANT TO VISIT ALL OR SOME How many ways can you visit 6 of them: Permutation of 10 objects taken 6 at a time: 10 P 6 = 10!/(10-6)! = 10!/4! = 3,628,800/24 = 151,200
22
HOW MANY WAYS CAN YOU VISIT ALL 10 OF THEM: 10 P 10 = 10!/(10-10)! = 10!/0!= 10! = ( 0! By definition = 1) 3,628,800
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.