Download presentation
Presentation is loading. Please wait.
Published byGary Skinner Modified over 9 years ago
1
Matched designs Need Matched analysis
2
Incorrect unmatched analysis. cc cc exp,exact Proportion | Exposed Unexposed | Total Exposed -----------------+------------------------+---------------------- Cases | 106 515 | 621 0.1707 Controls | 95 526 | 621 0.1530 -----------------+------------------------+---------------------- Total | 201 1041 | 1242 0.1618 | | | Point estimate | [95% Conf. Interval] |------------------------+---------------------- Odds ratio | 1.139622 |.8327338 1.560771 (exact) Attr. frac. ex. |.122516 | -.200864.359291 (exact) Attr. frac. pop |.0209125 | +----------------------------------------------- 1-sided Fisher's exact P = 0.2205 2-sided Fisher's exact P = 0.4411 This analysis ignores that a matching control was found for each case. Notice that the ‘sample size’ looks to be 1242 and yet nevertheless there is no evidence of a disease- exposure relationship.
3
Correct classical analysis. reshape wide cc exp,i(pair) j(ct) (note: j = 1 2) Data long -> wide ----------------------------------------------------------------------------- Number of obs. 1242 -> 621 Number of variables 4 -> 5 j variable (2 values) ct -> (dropped) xij variables: cc -> cc1 cc2 exp -> exp1 exp2 -----------------------------------------------------------------------------. mcc exp2 exp1 | Controls | Cases | Exposed Unexposed | Total -----------------+------------------------+---------- Exposed | 90 16 | 106 Unexposed | 5 510 | 515 -----------------+------------------------+---------- Total | 95 526 | 621 McNemar's chi2(1) = 5.76 Prob > chi2 = 0.0164 Exact McNemar significance probability = 0.0266 odds ratio 3.2 1.120172 11.16902 (exact). The ‘sample size’ is 21! But the p-value is less than 5% and the estimated odds ratio is very different from the incorrect analysis
4
Exact p-value is just the binomial. bitesti 21 16 0.5 N Observed k Expected k Assumed p Observed p ------------------------------------------------------------ 21 16 10.5 0.50000 0.76190 Pr(k >= 16) = 0.013302 (one-sided test) Pr(k <= 16) = 0.996401 (one-sided test) Pr(k = 16) = 0.026604 (two-sided test)
5
Conditional logistic regression version of the correct classical analysis. clogit exp cc,group(pair) note: multiple positive outcomes within groups encountered. note: 600 groups (1200 obs) dropped due to all positive or all negative outcomes. Conditional (fixed-effects) logistic regression Number of obs = 42 LR chi2(1) = 6.06 ------------------------------------------------------------------------------ exp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- cc | 1.163151.5123475 2.27 0.023.1589681 2.167334 ------------------------------------------------------------------------------. clogit exp cc,group(pair) or note: multiple positive outcomes within groups encountered. note: 600 groups (1200 obs) dropped due to all positive or all negative outcomes. Conditional (fixed-effects) logistic regression Number of obs = 42 LR chi2(1) = 6.06 ------------------------------------------------------------------------------ exp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- cc | 3.2 1.639512 2.27 0.023 1.172301 8.734961 P-values / CIs are based on the normal approximation to the binomial. 600 concordant pairs are correctly ‘dropped’
6
4 matching controls per case LA Study of endometrial cancer use "C:\Mdsc643.02\la.dta", clear (LA Study of Endometrial Cancer). desc Contains data from C:\Mdsc643.02\la.dta obs: 315 LA Study of Endometrial Cancer vars: 11 24 Nov 1997 15:43 size: 15,120 (98.6% of memory free) (_dta has notes) ------------------------------------------------------------------------------- storage display value variable name type format label variable label ------------------------------------------------------------------------------- row float %9.0g age float %9.0g Age (yr) gbd float %9.0g yn Gall Bladder Disease hyp float %9.0g yn Hyertension obe float %9.0g yn Obesity est float %9.0g yn Estrogen (Any) Use conj float %9.0g cl Conjugated Dose dur float %9.0g Estrogen Duration (mo) ned float %9.0g yn Non Estrogen Drug cc float %9.0g ccl Case/Control quint float %9.0g 4 Controls: 1 Case ------------------------------------------------------------------------------- Sorted by: quint
7
Incorrect analysis. cc cc est,exact Proportion | Exposed Unexposed | Total Exposed -----------------+------------------------+---------------------- Cases | 56 7 | 63 0.8889 Controls | 127 125 | 252 0.5040 -----------------+------------------------+---------------------- Total | 183 132 | 315 0.5810 | | | Point estimate | [95% Conf. Interval] |------------------------+---------------------- Odds ratio | 7.874016 | 3.38601 21.15736 (exact) Attr. frac. ex. |.873 |.7046671.9527351 (exact) Attr. frac. pop |.776 | +----------------------------------------------- 1-sided Fisher's exact P = 0.0000 2-sided Fisher's exact P = 0.0000
8
Classical analysis. drop row. sort quint cc. by quint: gen otf=_n. reshape wide cc age gbd hyp obe est conj dur ned, i(quint) j(otf) (note: j = 1 2 3 4 5) Data long -> wide ----------------------------------------------------------------------------- Number of obs. 315 -> 63 Number of variables 11 -> 46 j variable (5 values) otf -> (dropped) xij variables: cc -> cc1 cc2... cc5 age -> age1 age2... age5 gbd -> gbd1 gbd2... gbd5 hyp -> hyp1 hyp2... hyp5 obe -> obe1 obe2... obe5 est -> est1 est2... est5 conj -> conj1 conj2... conj5 dur -> dur1 dur2... dur5 ned -> ned1 ned2... ned5 -----------------------------------------------------------------------------
9
A new table. gen sumcon=est1+est2+est3+est4. gen sumcas=est5. table sumcas sumcon ---------------------------------------- | sumcon sumcas | 0 1 2 3 4 ----------+----------------------------- 0 | 4 1 1 1 1 | 3 17 16 15 5 ---------------------------------------- There are 5 concordant pairs. Exact p-values based on Binomial p= 1/5, 2/5, 3/5 and 4/5
10
Components to the p-value. bitesti 7 3.2 N Observed k Expected k Assumed p Observed p ------------------------------------------------------------ 7 3 1.4 0.20000 0.42857 Pr(k >= 3) = 0.148032 (one-sided test) Pr(k <= 3) = 0.966656 (one-sided test) Pr(k >= 3) = 0.148032 (two-sided test) note: lower tail of two-sided p-value is empty. bitesti 18 17.4 N Observed k Expected k Assumed p Observed p ------------------------------------------------------------ 18 17 7.2 0.40000 0.94444 Pr(k >= 17) = 0.000002 (one-sided test) Pr(k <= 17) = 1.000000 (one-sided test) Pr(k >= 17) = 0.000002 (two-sided test) note: lower tail of two-sided p-value is empty return list scalars: r(p) = 1.92414534861e-06
11
Next 2 p-values. bitesti 17 16.6 N Observed k Expected k Assumed p Observed p ------------------------------------------------------------ 17 16 10.2 0.60000 0.94118 Pr(k >= 16) = 0.002088 (one-sided test) Pr(k <= 16) = 0.999831 (one-sided test) Pr(k = 16) = 0.002539 (two-sided test). bitesti 16 15.8 N Observed k Expected k Assumed p Observed p ------------------------------------------------------------ 16 15 12.8 0.80000 0.93750 Pr(k >= 15) = 0.140737 (one-sided test) Pr(k <= 15) = 0.971853 (one-sided test) Pr(k = 15) = 0.222425 (two-sided test)
12
Correct p-value TITLE STB-49 sbe28. Meta-analysis of p values. DESCRIPTION/AUTHOR(S) STB insert by Aurelio Tobias, Statistical Consultant, Madrid, Spain. Support: bledatobias@ctv.es After installation, see help metap. INSTALLATION FILES (click here to install) sbe28/metap.ado sbe28/metap.hlp ANCILLARY FILES (click here to get) sbe28/fleiss.dta
13
Using the STB ado file. input pvar pvar 1. 0.148032 2. 1.92414534861e-06 3. 0.002539 4. 0.222425 5. end. metap pvar Meta-analysis of p_values ------------------------------------------------------------ Method | chi2 p_value studies --------------------+--------------------------------------- Fisher | 45.101012 3.521e-07 4 ------------------------------------------------------------
14
Conditional logistic version. clogit est cc,group(quint) note: multiple positive outcomes within groups encountered. note: 5 groups (25 obs) dropped due to all positive or all negative outcomes. Conditional (fixed-effects) logistic regression Number of obs = 290 LR chi2(1) = 35.35 ------------------------------------------------------------------------------ est | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- cc | 2.07376.4208244 4.93 0.000 1.248959 2.898561 ------------------------------------------------------------------------------. clogit est cc,group(quint) or note: multiple positive outcomes within groups encountered. note: 5 groups (25 obs) dropped due to all positive or all negative outcomes. Conditional (fixed-effects) logistic regression Number of obs = 290 LR chi2(1) = 35.35 Prob > chi2 = 0.0000 Log likelihood = -99.934552 Pseudo R2 = 0.1503 ------------------------------------------------------------------------------ est | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- cc | 7.954675 3.347522 4.93 0.000 3.486712 18.148 ------------------------------------------------------------------------------
15
Reversing Case/Control and Exposure. clogit cc est,group(quint) Conditional (fixed-effects) logistic regression Number of obs = 315 LR chi2(1) = 35.35 Prob > chi2 = 0.0000 Log likelihood = -83.72159 Pseudo R2 = 0.1743 ------------------------------------------------------------------------------b cc | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- est | 2.073761.4208245 4.93 0.000 1.24896 2.898562 ------------------------------------------------------------------------------. clogit cc est,group(quint) or Conditional (fixed-effects) logistic regression Number of obs = 315 LR chi2(1) = 35.35 Prob > chi2 = 0.0000 Log likelihood = -83.72159 Pseudo R2 = 0.1743 ------------------------------------------------------------------------------ cc | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- est | 7.954681 3.347525 4.93 0.000 3.486714 18.14802 ------------------------------------------------------------------------------.
16
Assessment of potential confounder. clogit est hyp cc,group(quint) or note: multiple positive outcomes within groups encountered. note: 5 groups (25 obs) dropped due to all positive or all negative outcomes. Iteration 0: log likelihood = -93.816541 Iteration 1: log likelihood = -93.775297 Iteration 2: log likelihood = -93.775233 Iteration 3: log likelihood = -93.775233 Conditional (fixed-effects) logistic regression Number of obs = 290 LR chi2(2) = 47.66 Prob > chi2 = 0.0000 Log likelihood = -93.775233 Pseudo R2 = 0.2026 ------------------------------------------------------------------------------ est | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hyp | 3.175014 1.099597 3.34 0.001 1.610462 6.259518 cc | 7.423919 3.149142 4.73 0.000 3.232684 17.04917 ------------------------------------------------------------------------------
17
Assessment of age as a potential modifier (even though age was a part of the matching criteria) gen ac=age*cc. clogit est hyp cc ac,group(quint) or note: multiple positive outcomes within groups encountered. note: 5 groups (25 obs) dropped due to all positive or all negative outcomes. Iteration 0: log likelihood = -94.0779 Iteration 1: log likelihood = -93.779779 Iteration 2: log likelihood = -93.774339 Iteration 3: log likelihood = -93.774338 Conditional (fixed-effects) logistic regression Number of obs = 290 LR chi2(3) = 47.67 Prob > chi2 = 0.0000 Log likelihood = -93.774338 Pseudo R2 = 0.2027 ------------------------------------------------------------------------------ est | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- hyp | 3.173201 1.100016 3.33 0.001 1.608502 6.259989 cc | 6.085438 28.69545 0.38 0.702.0005895 62816.24 ac | 1.002775.0656825 0.04 0.966.8819609 1.140139 ------------------------------------------------------------------------------
18
Notice… …that age*cc is included in the model even though age is not included. This is a special case where we CAN interpret a model with an interaction term even though one of the constituents of this interaction is not included in the model
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.