Download presentation
Presentation is loading. Please wait.
Published byBritney Dickerson Modified over 9 years ago
1
h.hajimirsadeghi@ece.ut.ac.ir http://khorshid.ut.ac.ir/~h.hajimirsadeghi Ant Colony Optimization with a Genetic Restart Approach toward Global Optimization Hossein Hajimirsadeghi, Mahdy Nabaee, Babak Nadjar-araabi Control and Intelligent Processing Center of Excellence School of Electrical and Computer engineering University of Tehran, Tehran, IRAN 03/09/2008
2
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Outline Multiplicative Squares Ant Colony Optimization Local Search algorithms Genetic Algorithms Methodology Results Conclusion 2
3
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Multiplicative Squares Numbers 1 to : MAX-MS: Max { } MIN-MS: Min { } Kurchan: Min (Max {} – Min {}) 3 For each i
4
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Multiplicative Squares (3*3 example) Rows: 5*1*8 = 40, 3*9*4 = 108, 7*2*6 = 84 Columns: 5*3*7 = 105, 1*9*2 = 18, 8*4*6 = 192 Diagonals: 5*9*6 = 270, 1*4*7 = 28, 8*3*2 = 48 Anti-diagonals: 8*9*7 = 504, 1*3*6 = 18, 5*4*2 = 40 MAX-MS/MIN-MS: SF=40+108+84+105+18+192+270+28+48+504+18+40= 1455 Kurchan MS: SF= 504-18 = 486 4 815 493 627
5
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Why Multiplicative Squares? NP-hard Combinatorial Problem Ill-conditioned 1 16 Complicated –precision of 20+ digits for dimensions greater than 10 12961354134332523412…??? –Local Optima 5 1 93 16 93 1 115136115136 215410215410 147128147128 (a) (b) SF= 134355SF=66045
6
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Introduction (ACO) Ant Colony Optimization (Marco Dorigo, 1992): –bio-inspired –population-based –meta-heuristic –Evolutionary –Combinatorial Optimization problems. Used to solve Traveling Salesman Problem (TSP). 6 http://iridia.ulb.ac.be/~mdorigo /ACO/ACO.html Fig.1 TSP with 50 cities
7
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Ant System TSP 7
8
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Ant System : Heuristic Function (attractiveness) (visibility) 8
9
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Ant System : Pheromone Trails 9
10
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Ant System Extensions ASrank AS-elite MMAS Ant-Q ACS ACO-LBT P-B ACO Omicron ACO (OA) … 10
11
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Local Search Algorithms Hill Climbing 2-opt and 3-opt K-opt Lin-Kernighan 11 Fig. 3. With 2-opt algorithm dashed lines convert to solid lines: (a,b) (a,c) and (c,d) (b,d).
12
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Genetic Algorithms 12 Encoding GA Operators Binary Encoding Permutation Encoding Real Encoding Tree Encoding Selection Cross Over Mutation Elitism SelectionMutation Cross Over Elitism Fig.4. Genetic Operators
13
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Proposed Method 1.Indices are selected 2. to 1 are put according to the indices 13 18106 4911 321412 5137 Fig. 4. Graph representation for the MAX MS (4*4) problem, using ACO. Heavy lines show a feasible path for the problem. Index 13 Index 6 15 16
14
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran ACO Terms for MAX-MS Trails: Heuristic Function: 14 Fig. 5. Heuristic function is illustrated for two sample conditions. The current position of the ant is displayed by. (a) (b)
15
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran ACO Terms for MAX-MS Max and min trail like MAX-MIN Ant System (MMAS). iteration-best and global-best deposit pheromone Eating ants like Ant Colony System (ACS). Adaptive (decreasing with iterations) 15
16
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Local Search 2 opt for each iteration 16 Fig.6. 2-opt
17
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Genetic Restart Approach Cross-over Mutation 17 Fig. 7. An example of two cut cross over with 3 children. Parent 11 34 25 Parent 2 4 512 3 Child 134512 Child 251234 Child 353412 Fig. 8. An example of a two cut mutation. Parent 11 34 25 Parent 24 51 23 Child of parent 1 14325 Child of parent 2 25143
18
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Results 18 TABLE 1 Experiment results (a) MS7 MethodBestAvg.Std. Dev. Std. Dev % Best err.% Avg. err.% Adaptive heuristic 836927418654836545183884.3310273380.30.03700.046 Fixed heuristic836864383934836387896300.22827292770.0340.00750.064 No GA restart836590536598835890051299.2472719981.50.0570.04030.124 (b) MS8 MethodBestAvg.Std. Dev. Std. Dev % Best err.% Avg. err.% Adaptive heuristic 402702517088866402397450057731410397887424.80.10200.076 Fixed heuristic40269331646260239622889324340712487304223038.13.150.00231.608 No GA restart40267224551627837941167972993127191910644358.27.170.00755.784
19
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Results 19 ab Fig. 9. Evaluation of introduced algorithms. (a) Comparison between the proposed strategies on MS7. (b) Comparison between the proposed strategies on MS8. Zoom on iteration = 300 to 600
20
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Performance of the Genetic Restart Approach 20 TABLE 2 Genetic Semi-Random-Restart Performance Method Avg. number of successive genetic restart (MS7) Avg. number of successive genetic restart (MS8) Fixed heuristic1.62.4 Flexible heuristic1.32.3 Fig. 10. Successful operation of the posed restart algorithm to evade local optimums. SF Survivor semi-random-restart
21
h.hajimirsadeghi@ece.ut.ac.ir ECE Department, University of Tehran Conclusion Novel algorithm to solve MAX-MS –Adaptive –Genetic Restart Algorithm Can be used for NP-hard combinatorial problems for global optimization 21
22
h.hajimirsadeghi@ece.ut.ac.ir http://khorshid.ut.ac.ir/~h.hajimirsadeghi Thanks for Your Attention 03/09/2008 22
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.