Download presentation
Presentation is loading. Please wait.
Published byDorcas Black Modified over 9 years ago
1
1 Game Theory Lecture 3 Game Theory Lecture 3 Game Theory Lecture 3
2
2
4
S N.S. 0 1 2 11 111 1 2 2 1 1/6 2 1 2 1 2 1 2 2 1 2 D,W W,D D,W W,D D,W W,D W,L L,W W,L L,W 1 4 23 5 6
5
S N.S. S 2 2 1 2 1 2 W,D D,W W,D W,L L,W W,DW,D W,L N.S. S. A Lottery
6
N.S. S. A Lottery ? consider the lottery for assume that
7
S N.S. 2 2 1 2 1 2 W,D D,W W,D W,L L,W N.S. S.
8
S N.S. 2 2 1 2 1 2 W,D D,W W,D W,L L,W N.S. S. W, L L, W W, D
9
N.S. S. ?
10
von Neumann - Morgenstern utility functions von Neumann - Morgenstern utility functions A consumer has preferences over a set of prizes and preferences over the set of all lotteries over the prizes
12
for each prize w j there exists a unique j s.t. 1. 2. 3.
13
if then: 4.
14
5.
15
we now look for a utlity function representing the preferences over the lotteries
16
take a lottery: Replace each prize with an equivalent lottery
18
define: the expected utility of the lottery clearly U r epresents the preferences on the lotteries
19
<
20
A utility function on prizes is called a von Neumann - Morgenstern utility function if the expected utility function : represents the preferences over the lotteries. i.e. if U is a utility function for lotteries. Ifis a vN-M utility function then is a vN-M utility function iff
21
Ifis a vN-M utility function then is a vN-M utility function iff 2. Let v() be a vN-M utility function. Choose a>0,b s.t. 1.It is easy to show that if u( ) is a vN-M utility function then so is au( )+b a>0
22
since f( ) is a vN-M utility function, and since for all j It follows that: But by the definition of f( ) hence:
23
John von Neumann 1903-1957 John von Neumann 1903-1957 Oskar Morgenstern 1902-1976 Oskar Morgenstern 1902-1976 Neumann Janos Kurt Gödel
24
Information Sets and Simultaneous Moves 1 22
25
Some (classical) examples of simultaneous games C not confess D confess C not confess -3, -3 -6, 0 D confess 0, -6 -5, -5 Prisoners’ Dilemma +6 3, 3 0, 6 6, 0 1, 1
26
Free Rider (Trittbrettfahrer) C Cooperate D defect C cooperate 3, 3 0, 6 D defect 6, 0 1, 1
27
Some (classical) examples of simultaneous games C Cooperate D defect C cooperate 3, 3 0, 6 D defect 6, 0 1, 1 Prisoners’ Dilemma The ‘ D strategy dominates the C strategy
28
Strategy s 1 strictly dominates strategy s 2 if for all strategies t of the other player G 1 (s 1,t) > G 1 (s 2,t)
29
1, 5 2, 3 7, 4 3, 3 4, 7 5, 2 X X Nash Equilibrium (saddle point) Successive deletion of dominated strategies
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.