Download presentation
Presentation is loading. Please wait.
Published byPolly Jordan Modified over 9 years ago
1
Lecture 15-16 Pose Estimation – Gaussian Process Tae-Kyun Kim 1 EE4-62 MLCV
2
MS KINECT http://www.youtube.com/watch?v=p2qlHoxPioM http://www.youtube.com/watch?v=p2qlHoxPioM 2 The KINECT body pose estimation is achieved by randomised regression forest techniques. EE4-62 MLCV
3
We learn pose estimation as a regression problem, and Gaussian process as a cutting edge regression method. 3 EE4-62 MLCV We see it through the case study (slide credits to) : Semi-supervised Multi-valued Regression, Navaratnam, Fitzgibbon, Cipolla, ICCV07, where practical challenges addressed are 1)multi-valued regression and 2)sparsity of data.
4
4 EE4-62 MLCV A mapping function is learnt from the input image I to the pose vector, which is taken as a continuous variable.
5
5 EE4-62 MLCV Given an image (top left), e.g. a silhouette (top right) is obtained by background subtraction techniques (http://en.wikipedia.org/wiki/Background_subtraction).http://en.wikipedia.org/wiki/Background_subtraction The estimated 3d pose is shown at two camera angels (bottom left and right).
6
6 EE4-62 MLCV We attempt to map 2D image space to 3D pose space. There is inherent ambiguity in pose estimation (as an example in the above).
7
7 EE4-62 MLCV Eye tracking can be tackled as a regression problem, where the input is an image I and the output is a eye location.
8
8 EE4-62 MLCV Typical image processing steps: Given an image, a silhouette is segmented. A shape descriptor is applied to the silhouette to yield a finite dimensional vector. (Belongie and Malik, Matching with Shape Contexts, 2000)
9
9 EE4-62 MLCV The output is a vector of m joint angles.
10
10 EE4-62 MLCV
11
11 EE4-62 MLCV
12
12 EE4-62 MLCV
13
13 EE4-62 MLCV
14
14 EE4-62 MLCV
15
Gaussian Process 15 EE4-62 MLCV
16
16 EE462 MLCV i.i.d. (independent identical distributed) Review of Gaussian density estimation (lecture 1,2) We want to find the Gaussian parameters from the given data. The problem is to find the parameters by maximising the posterior probability
17
17 EE462 MLCV Review of Gaussian density estimation (lecture 1,2) We do not have priors on the parameters and data, thus we maximise the (log) likelihood function instead. Maximum Likelihood (ML) vs Maximum A Posterior (MAP) solutions: P(X|Y) P(X|Y)P(Y) (e.g. Gaussian Process)
18
EE462 MLCV Review of polynomial curve fitting (lecture 1,2) We want to fit a polynomial curve to given data pairs (x,t). where The objective ftn to minimise is
19
Gaussian Processes 19 EE4-62 MLCV
20
20 EE4-62 MLCV
21
21 EE4-62 MLCV
22
22 EE4-62 MLCV
23
Gaussian Processes for Regression 23
24
24 EE4-62 MLCV
25
25
26
EE4-62 MLCV 26
27
27 EE4-62 MLCV
28
28 EE4-62 MLCV
29
29 EE4-62 MLCV
30
30
31
31 EE4-62 MLCV
32
Gaussian Process Matlab Toolbox http://www.lce.hut.fi/research/mm/gpstuff/i nstall.shtml (try demo_regression_robust.m, demo_regression1.m) http://www.lce.hut.fi/research/mm/gpstuff/i nstall.shtml 32
33
Learning Hyperparameters 33 EE4-62 MLCV
34
34
35
Automatic Relevance Determination 35 EE4-62 MLCV
36
36
37
37
38
Back to the pose estimation problem 38
39
39 EE4-62 MLCV
40
It’ll never work… – is multivalued – and live in high dimensions 40 EE4-62 MLCV
41
41 EE4-62 MLCV
42
42 EE4-62 MLCV
43
43 EE4-62 MLCV
44
44 EE4-62 MLCV
45
45 EE4-62 MLCV
46
46 EE4-62 MLCV
47
47 EE4-62 MLCV GMM : Gaussian Mixture Model GPLVM : Gaussian Process Latent Variable Model
48
48 EE4-62 MLCV
49
49 EE4-62 MLCV
50
50 EE4-62 MLCV
51
51 EE4-62 MLCV
52
52 EE4-62 MLCV
53
53 EE4-62 MLCV
54
54 EE4-62 MLCV
55
55 EE4-62 MLCV
56
56 EE4-62 MLCV
57
57 EE4-62 MLCV
58
58 EE4-62 MLCV
59
59 EE4-62 MLCV
60
60 EE4-62 MLCV
61
61 EE4-62 MLCV t: a continuous latent variable
62
62 EE4-62 MLCV
63
63 EE4-62 MLCV
64
64 EE4-62 MLCV
65
65 EE4-62 MLCV
66
66 EE4-62 MLCV
67
67 EE4-62 MLCV
68
68 EE4-62 MLCV
69
69 EE4-62 MLCV
70
70 EE4-62 MLCV
71
Real-Time Human Pose Recognition in Parts from Single Depth Images (J. Shotton et al, 2011) Key features – Depth image as input – Real-time by Random Forest, and Part-based 71 EE4-62 MLCV
72
Progressive Search Space Reduction for Human Pose Estimation (Ferrari et al, 2008) 72 EE4-62 MLCV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.