Presentation is loading. Please wait.

Presentation is loading. Please wait.

UAV pose estimation using POSIT algorithm

Similar presentations


Presentation on theme: "UAV pose estimation using POSIT algorithm"— Presentation transcript:

1 UAV pose estimation using POSIT algorithm
Chayatat Ratanasawanya Min He July 21, 2010

2 Overview The goal Experimental setup POSIT algorithm
Homogeneous transformation Optitrack system Result calculation Results Conclusion Questions/comments

3 Experimental goal To be able to know the pose of the UAV from images taken by the on-board camera. Use POSIT algorithm in a part of the process Calculated pose is compared to the reading from the Optitrack system.

4 Test setup

5 Test setup Move the Q-ball around the test area in 17 different locations Q-ball pose is different in each location For each location, take a picture using on-board camera and record Optitrack pose reading Process the pictures offline using POSIT algorithm. Calculate Q-ball pose using homogeneous transformation and inverse kinematics. Results are compared to Optitrack readings.

6 POSIT algorithm Developers: Daniel DeMenthon & Philip David
The algorithm determines the pose of an object relative to the camera from a set of 2D image points Image coordinates of min. 4 non-coplanar feature points POSIT Daniel DeMenthon and Philip David are at the university of Maryland Rotation matrix of object wrt. camera 3D world coordinates of the same points Translation of object wrt. camera Camera intrinsic parameters Reference:

7 Homogeneous transformation
Homogeneous transformation is a matrix which shows how one coordinate frame is related to another. It is used to convert the location of a point between two frames. y x z Frame A y x z Frame C (dx, dy, dz)

8 Homogeneous transformation
Multiplication: Inverse: y x z Frame A y x z Frame B BTA y x z Frame C CTB

9 Forward kinematics The process of deriving the transformation matrix from a known transformation (rotation and translation) between two frames y x z Frame A y x z Frame A y x z Frame C y x z Frame A ψ (dx, dy, dz) θ

10 Inverse kinematics The process of deriving the transformation (rotation and translation) between two frames from a known transformation matrix Translation Inverse kinematics formula Rotation angles

11 Inverse kinematics formulas
ψ y x z θ

12 Optitrack system A motion capture system
It tracks the movement of IR reflectors attached to an object in the workspace using six IR cameras Origin of the workspace (world) coordinates has to be set up during system calibration Point cloud mode: gives x,y,z-coordinates of individual reflector in a group Trackable mode: gives pose of an object defined by a group of reflectors

13 Q-ball trackable object

14 Result calculation y x z Box frame, B y x z Q-ball frame, Q y x z
Cam frame, C CTB POSIT y x z World frame, W

15 Result calculation y x z Q-ball frame, Q y x z Box frame, B z x y
Cam frame, C WTB y x z World frame, W

16 Result calculation y x z Q-ball frame, Q y x z Box frame, B z x y
Cam frame, C QTC y x z World frame, W

17 Result calculation Inverse kinematics formula Translation
y x z Q-ball frame, Q y x z Box frame, B z x y Cam frame, C Inverse kinematics formula CTB WTB QTC y x z World frame, W Translation Rotation angles

18 Results Experiment Optitrack measurements of Q-ball pose
Calculation of Q-ball pose using POSIT algorithm x (cm) y (cm) z (cm) roll (deg) yaw (deg) pitch (deg) 1 -55.92 78.27 -33.51 -6.432 -11.43 -8.805 2 -46.26 63.91 -32.31 -1 -9.369 0.8890 3 -66.03 66.32 17.57 -10.48 -20.46 0.028 7.8211 4 3.569 103.7 -40.82 -5.253 0.423 -11.02 5.8695 5 32.92 103.2 -54.8 -1.326 20.29 -11.55 6 61.71 103.1 -65.01 12.11 31.45 -12.75 3.4818 7 82.7 102.2 -70.74 13.1 41.74 -13.25 5.1808 8 23.1 103.5 -40.13 9.587 16.73 -12.26 4.2641 9 -53.57 92.41 -52.75 -5.341 -16.65 -12.19 10 -46.95 92.62 -72.83 -1.814 -25.09 -13.02 3.3547 11 -41.74 92.17 -65.05 1.685 -10.55 -10.03 3.8103 12 -62.84 103.6 -9.212 1.721 -10.9 -11.78 5.5375 13 -59.93 100.9 -2.383 -5.947 0.5845 5.9820 0.6478 14 -54.06 66.81 -5.23 6.3 -9.559 11.55 3.7949 5.5188 15 -60.56 76.76 -18.05 0.1576 -24.6 1.029 1.3763 16 -53.01 76.78 -26.84 -23.04 0.681 1.6016 17 -43.46 79.25 -40.21 -8.653 -10.15 -9.22

19 Results: Translational DOF

20 Results: Rotational DOF

21 Results: Error Sources of error:
Max. Error x = 15 cm Max. Error y = 17 cm Max. Error z = 8 cm Max. Error roll = 8.5 deg Max. Error yaw = 7 deg Max. Error pitch = 8 deg Sources of error: Optitrack measurement accuracy of 4 cm Imaginary c.g. of Q-ball trackable object does not correspond exactly to c.g. of Q-ball used to define QTC

22 Conclusion POSIT algorithm can be used to estimate the pose of the UAV offline A 3D object of known dimension must be in the scene At least 4 non-coplanar feature points must be seen in image. Position of the object in the world frame must be known (frame WTB)

23 Summary Experimental goal and setup POSIT algorithm
Results of POSIT & homogeneous transformation Optitrack system How to calculate the result Test results

24 Thank you


Download ppt "UAV pose estimation using POSIT algorithm"

Similar presentations


Ads by Google