Presentation is loading. Please wait.

Presentation is loading. Please wait.

Author(s): Alex Ocampo, Chong Zhang, Sangwon Hyun, Yiqun Hu, 2012 License: Unless otherwise noted, this material is made available under the terms of the.

Similar presentations


Presentation on theme: "Author(s): Alex Ocampo, Chong Zhang, Sangwon Hyun, Yiqun Hu, 2012 License: Unless otherwise noted, this material is made available under the terms of the."— Presentation transcript:

1 Author(s): Alex Ocampo, Chong Zhang, Sangwon Hyun, Yiqun Hu, 2012 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution – Noncommercial – Share Alike 3.0 Lic ense: http://creativecommons.org/licenses/by-nc-sa/3.0/ We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your abilit y to use, share, and adapt it. The citation key on the following slide provides information about how you may sha re and adapt this material. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questi ons, corrections, or clarification regarding the use of content. For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.http://open.umich.edu/education/about/terms-of-use

2 Attribution Key for more information see: http://open.umich.edu/wiki/AttributionPolicy Use + Share + Adapt Make Your Own Assessment Creative Commons – Attribution License Creative Commons – Attribution Share Alike License Creative Commons – Attribution Noncommercial License Creative Commons – Attribution Noncommercial Share Alike License GNU – Free Documentation License Creative Commons – Zero Waiver Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ Public Domain – Expired: Works that are no longer protected due to an expired copyright term. Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105 ) Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain. Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your j urisdiction may differ Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that y our use of the content is Fair. To use this content you should do your own independent analysis to determine whether or not your use will be Fair. { Content the copyright holder, author, or law permits you to use, share and adapt. } { Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. } { Content Open.Michigan has used under a Fair Use determination. }

3 Descriptive Statistics quantitatively describe the main features of a collection of data. My salary is $45,000. It’s a middle salary in my company Staff. Jones Benefits are highly related to working age What should I make of all this???!!! How do salaries vary across the company? HR manager employee

4 Mean> mean(x); > mean(x,trim=a) Median> median(x) Mode> sort(table(x)) Standard deviation> sd(x) Variance > var(x) the median absolute deviation > mad(c(x)) interquartile range> IQR(x) Range> range(x) Descriptive Statistics in R

5 Data Dimensions > length(x) [1] 1000 ------------------------- > nrow(X) [1] 2030 > ncol(X) [1] 100000 > dim(X) [1] 2034 100000 Matrix X ….

6 Vectorization in R Matrix X > apply( X, MARGIN=1, FUN= mean) > apply( X, MARGIN=2, FUN= mean)

7 boxplot(X) Good for small data sets Easy to compar e groups side b y side 1.5*IQR defines outlier

8 The Big Six Minimum, 1 st Q, Median, Mean, 3 rd Q, Maximu m > summary(X)

9 R tries to understand you > summary(X)

10 Histograms: > hist(X)

11 Correlation > cor(wt,mpg) [1] -0.8676594 > plot(x=wt,y=mpg)

12 Scatterplot Matrix Iris dataset 150 flowers 5 variables Goingslo, flickrflickr

13 Scatterplot Matrix > pairs(data)

14 > coplot(lat ~ long | depth)

15 Linear Regression Why? What?  Prediction of future or unknown observations  Assessment of relationship between variables  General description of data structure

16 Variable Selection Why?  Simplification  Elimination of multicollinearity and noise  Time and money saving How?  Testing-based Variable Selection Methods - Backward, Forward, Stepwise  Criterion-based Procedures What?  AIC = n ln(RSS/n) + 2(p)

17 Example: U.S. State Fact and Figures Life Expectancy  Population, Income, Illiteracy, Murder, HS Grad, Frost, Area > g <- lm(Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad + Frost + Area, data = statedata) > summary(g) Selected R code  Linear Regression  AIC > step(g) > anova(g) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.094e+01 1.748e+00 40.586 < 2e-16 *** Population 5.180e-05 2.919e-05 1.775 0.0832. Income -2.180e-05 2.444e-04 -0.089 0.9293 Illiteracy 3.382e-02 3.663e-01 0.092 0.9269 Murder -3.011e-01 4.662e-02 -6.459 8.68e-08 *** HS.Grad 4.893e-02 2.332e-02 2.098 0.0420 * Frost -5.735e-03 3.143e-03 -1.825 0.0752. Area -7.383e-08 1.668e-06 -0.044 0.9649 Analysis of Variance Table Response: Life.Exp Df Sum Sq Mean Sq F value Pr(>F) Population 1 0.4089 0.4089 0.7372 0.395434 Income 1 11.5946 11.5946 20.9028 4.218e-05 *** Illiteracy 1 19.4207 19.4207 35.0116 5.228e-07 *** Murder 1 27.4288 27.4288 49.4486 1.308e-08 *** HS.Grad 1 4.0989 4.0989 7.3895 0.009494 ** Frost 1 2.0488 2.0488 3.6935 0.061426. Area 1 0.0011 0.0011 0.0020 0.964908 Residuals 42 23.2971 0.5547 AIC = n ln(RSS/n) + 2(p)

18 Continued: U.S. State Fact and Figures Start: AIC=-22.18 Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad + Frost + Area Df Sum of Sq RSS AIC - Area 1 0.0011 23.298 -24.182 - Income 1 0.0044 23.302 -24.175 - Illiteracy 1 0.0047 23.302 -24.174 <none> 23.297 -22.185 - Population 1 1.7472 25.044 -20.569 - Frost 1 1.8466 25.144 -20.371 - HS.Grad 1 2.4413 25.738 -19.202 - Murder 1 23.1411 46.438 10.305 Step: AIC=-24.18 Life.Exp ~ Population + Income + Illiteracy + Murder + HS.Grad + Frost Df Sum of Sq RSS AIC - Illiteracy 1 0.0038 23.302 -26.174 - Income 1 0.0059 23.304 -26.170 <none> 23.298 -24.182 - Population 1 1.7599 25.058 -22.541 - Frost 1 2.0488 25.347 -21.968 - HS.Grad 1 2.9804 26.279 -20.163 - Murder 1 26.2721 49.570 11.569

19 Step: AIC=-28.16 Life.Exp ~ Population + Murder + HS.Grad + Frost Df Sum of Sq RSS AIC <none> 23.308 -28.161 - Population 1 2.064 25.372 -25.920 - Frost 1 3.122 26.430 -23.877 - HS.Grad 1 5.112 28.420 -20.246 - Murder 1 34.816 58.124 15.528 Coefficients: (Intercept) Population Murder HS.Grad Frost 7.103e+01 5.014e-05 -3.001e-01 4.658e-02 -5.943e-03 Effect on Response Variable of One Unit Change of Predict Variable

20 What is Principal Component Analysis (PCA)? Two general approaches of reducing variables : feature selection and feature extraction  Feature Selection : “Akaike Information Criterion”(AIC), BIC or Back-Substitution  Feature extraction : “Principal Component Analysis”(PCA) is most widely used  Create several artificial variables  Built-in functions in R = Convenient!

21 Actual Pima Data pregnantglucosediastolictricepsinsulinbmidiabetesagetest 161487235033.60.627501 21856629026.60.351310 38183640023.30.672321 418966239428.10.167210 50137403516843.12.288331 65116740025.60.201300 …. ( Imagine a data set with many more (~1000) columns ) (Imagine a Linear Regression: Which variables affect diabetes in what ways?)

22 PCA Example: Pima Indians The National Institute of Diabetes and Digestive and Kidney Diseases conducte d a study on 768 adult female Pima Indians living near Phoenix. 9 Variables (8 continuous, 1 categorical)  pregnant: Number of times pregnant  Glucose : Plasma glucose concentration at 2 hours in an oral glucose tolerance test  Diastolic : Diastolic blood pressure (mm Hg)  Triceps : Triceps skin fold thickness (mm)  Insulin : 2-Hour serum insulin (mu U/ml)  Bmi : Body mass index (weight in kg/(height in metres squared))  Diabetes : Diabetes pedigree function  Age : Age (years)  Test : diabetes (coded 0 if negative, 1 if positive) Next Slide: PCA Implementation

23 What principal components might look like: PC1 : 1*Insulin + 0.01*Glucose +.. PC2 : 1*Glucose + 0.12*Age + 0.12*DiastolicBP +.. PC3 : 0.92 * DiastolicBP + 0.31*Triceps  Principal components : What are they composed of? (less important)  Difference with Linear Regression

24 - Goal: obtain summary about data in lower dimensions - - How many dimensions? - R code in the next slide:

25 Brief : R-Code > data.pca <- prcomp(data[,-9]); summary(data.pca); Importance of components: PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 116.002 30.5411 19.7630 14.0777 10.6155 6.76973 2.78575 Proportion of Variance 0.889 0.0616 0.0258 0.0131 0.00744 0.00303 0.00051 Cumulative Proportion 0.889 0.950 0.976 0.9890 0.996 0.999 1.00000 > data.pca Rotation: PC1 PC2 PC3 PC4 PC5 PC6 PC7 pregnant 0.002 -0.02 0.02 0.05 2e-01 -0.005 -1e+00 glucose -0.098 -0.97 -0.14 -0.12 -9e-02 0.051 -9e-04 Diastolic -0.016 -0.14 0.92 0.26 -2e-01 0.076 1e-03 triceps -0.061 0.06 0.31 -0.88 3e-01 0.221 4e-04 insulin -0.993 0.09 -0.02 0.07 -2e-04 -0.006 -1e-03 bmi -0.014 -0.05 0.13 -0.19 2e-02 -0.971 3e-03 age 0.004 -0.14 0.13 0.30 9e-01 -0.015 2e-01 > barplot(totalrep, main="Representation of Principal Components", xlab="Principal Component", ylab="% of Total Variance") > biplot(data.pca, xlabs=rep('+',768), xlim = c(-0.05,0.3), ylim = c(-0.15,0.12)); abline(h=0,v=0);

26


Download ppt "Author(s): Alex Ocampo, Chong Zhang, Sangwon Hyun, Yiqun Hu, 2012 License: Unless otherwise noted, this material is made available under the terms of the."

Similar presentations


Ads by Google