Download presentation
Presentation is loading. Please wait.
Published byAlicia Stevenson Modified over 9 years ago
1
“Exotic” hadron-hadron S-wave Interaction Bing-song Zou IHEP, Beijing
2
Outline 1.“Exotic” S-wave Interaction Why interested ? How “exotic” ? Similarity between and N s-wave scattering What’s the nature of the broad ? Why it appears narrower in production processes ? Why f 0 (980)’s peak width is so narrow ? 2. S 0 pp & I=1 S 0 pp near threshold enhancement 3. K S-wave near threshold enhancement in J/ p K - vs p p p
3
1.“Exotic” S-wave Interaction Why interested ? 1) a fundamental strong interaction process and a necessary input for many reactions involving multi-pions 2) I=0 S-wave has the same quantum number of f 0 resonances which include : /f 0 (600) ( -model, exchange for NN interaction) and the lightest glueball candidate f 0 (1500)/f 0 (1710) f0f0
4
How “Exotic” pp
5
CERN-Munich data: B.Hyams et al., Nucl. Phys. B64 (1973) 134.
6
Exotic I=0 S-wave I=0 D-wave I=1 P-wave I=1 F-wave (770) (1690) f 2 (1270) D.V.Bugg, A.Sarantsev,B.S.Zou, Nucl. Phys. B471 (1996) 59
7
phase shifts
8
inelasticity
9
“Exotic” S-wave interaction : broad background with narrow resonances as dips instead of peaks
10
p I=0) (I=1/2) N (I=1/2) Similarity for and N s-wave scattering
11
What’s the nature of the broad ? Important role by t-channel exchange for all these processes =0 = - 2 K I=2 =1/2 = - 2 K I=3/2 D. Lohse, J.W. Durso, K. Holinde, J. Speth, Nucl.Phys.A516, 513 (1990) B.S.Zou, D.V.Bugg, Phys. Rev. D50, 591 (1994)
12
Basic features of I=2 Interaction F.Q.Wu, B.S.Zou et al., Nucl. Phys.A735 (2004) 111 repulsive force by t-channel attractive force by t-channel f 2 Inelasticity by S-wave
13
An important cause for hadron-hadron S-wave interactions appearing “exotic” is t-channel meson-exchange amplitude has a comparable strength as s-channel resonance contribution for S-waves. For higher partial waves, s-channel resonance contribution dominates.
14
Why broad appears narrower in production processes than in elastic scattering? T el = K / ( 1 - i K ) = K + K i K + K i K i K + … T prod = P / ( 1 - i K ) = P + P i K + P i K i K + …
15
el prod T el from Bugg,Sarantsev,Zou Nucl. Phys. B471 (1996) 59 with pole at ( 0.571 – i 0.420 ) GeV T prod = T el * P / K, K = tan assuming P=1
16
How about production vertex P ? P(V ’ V ) T. Mannel, R. Urech, Z. Phys.C73, 541 (1997); Ulf-G. Meißner, J.Oller, Nucl.Phys. A679 (2001) 671; L. Roca, J. Palomar, E. Oset, H.C.Chiang, Nucl. Phys. A744 (2004) 127 F.K.Guo,P.N.Shen, H.C.Chiang, R.G.Ping, Nucl.Phys.A761 (2005) 269 For ’ J/ , E small, 1 st term dominates higher peak For , E large, 2 nd term dominates lower peak peak position is process dependent ! P ~ c 1 + c 2 s
17
’ J/ BES, Phys.Rev. D62 (2000) 032002 BES, Phys.Lett. B598 (2004) 149
18
Why f 0 (980)’s peak width is so narrow ? BES, hep-ex/0411001 M = 965 MeV g 1 = 165 MeV 2 r = g 2 /g 1 = 4.21 r = 0 r = 4.21 Strong coupling to KK strongly reduce the peak width of f 0 (980)
19
B.S.Zou, hep-ph/9611235, “ S-wave interaction and 0 ++ particles” 0 ++ particles with substantial couplings to : /f 0 (600), f 0 (980), f 0 (1500), f 0 (1780-1800)
20
BES II Preliminary f 0 (1790) ? BES collaboration, hep-ex/0411001
21
S 0 pp & I=1 S 0 pp near threshold enhancement |M| 2 BES Both arbitrary normalization BES, Phys. Rev. Lett. 91, 022001 (2003) J/ → pp p p p p COSY-TOF, Eur.Phys.J.A16, 127 (2003)
22
One-Pion-Exchange and BES pp ( 1 S 0 ) near threshold enhancement Zou B.S., Chiang H.C. Phys.Rev.D69 (2004) 034004 NN interaction : 9 (S, I ) = (0,0) 1 (S, I ) = (1,1) -3 (S, I ) = (1,0) or (0,1) { NN interaction : I=0, pp ( 1 S 0 ) gets the biggest attractive force ! deuteron
23
One exchange FSI & exchange FSI
24
exchange FSI & full FSI by A.Sibirtsev et al. hep-ph/0411386
25
A.Sibirtsev, J. Haidenbauer, S. Krewald, Ulf-G. Meißner, A.W. Thomas, hep- ph/0411386 P-wave I=0 s-wave I=1 s-wave
26
Pure I = 1 (I=0) + (I=1) Near threshold enhancement for I=0 NN annihilation E. Klempt, F. Bradamante, A. Martin, J. Richard, Phys. Rept. 368 (2002) 119
27
BES, Phys. Lett. B472 (2000) 207 PWA Results on J/ to 4 0 - + BES, Phys. Lett. B446 (1999) 356 J/ 0 -+ resonances decaying to meson channels 0 - +
28
In summary, pp near threshold enhancement is very likely due to some broad sub-threshold 0 -+ resonance(s) plus FSI.
29
3. K s-wave near threshold enhancement complimentary BES and COSY experiments J/ P K - vs P P P P & P the same t-channel interaction K - & the same interaction P K - for * P K + for pentaquarks
30
Events/ 10 MeV NxNx NxNx NxNx PS, eff. corrected (Arbitrary normalization) Near-threshold enhancement in M K
31
BES Collaboration, Phys. Lett. B510 (2001) 75
32
B.C.Liu and B.S.Zou, Phys. Rev. Lett. 96 (2006) 042002 From relative branching ratios of J/ p N* p (K- p ( p g N*K /g N*p /g N*p ~ 1.3 : 1 : 0.6 Smaller N*(1535) BW mass previous results 0 ~ 2.6 from N and N data
33
P P P with g N*K /g N*p = 1.3 without N*(1535) K.Tsushima, A.Sibirtsev, A.Thomas, Phys.Rev.C59 (1999) 369 with N*(1535)
34
(1) (2) (3) Mass of N*(1535)
35
A.Zhang, Y. Liu, P. Huang, W. Deng, X.Chen, S.L. Zhu, hep-ph/0403210 : 1/2- and 1/2+ octet N* pentaquarks have similar masses in Jaffe-Wilczek diquark model N*(1535) ~ uud (L=1) + [ud][us] s + … N*(1440) ~ uud (n=1) + [ud][ud] d + … *(1405) ~ uds (L=1) + [ud][su] u + … Larger [ud][us] s component in N*(1535) makes it coupling stronger to N & K , weaker to N & K and heavier ! B.C.Liu, B.S.Zou, PRL 96(2006)042002 u d du qq u du qq SS q ½+ [ud] } L=1 q ½ - [ud] [us] } L=0
36
Summary for our study on J/ P K - and P P P 1) near-threshold enhancement due to N*(1535) with g N*K /g N*p = 1.0 ~ 1.6 compatible with all data 2) Larger [ud][us] s component in N*(1535) makes it coupling stronger to strangeness and heavier !
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.