Presentation is loading. Please wait.

Presentation is loading. Please wait.

The GSI Future Project Klaus Peters Ruhr-Universität Bochum University of Tennessee Knoxville, Nov 25, 2002 Oak Ridge National Laboratory Oak Ridge, Nov.

Similar presentations


Presentation on theme: "The GSI Future Project Klaus Peters Ruhr-Universität Bochum University of Tennessee Knoxville, Nov 25, 2002 Oak Ridge National Laboratory Oak Ridge, Nov."— Presentation transcript:

1 The GSI Future Project Klaus Peters Ruhr-Universität Bochum University of Tennessee Knoxville, Nov 25, 2002 Oak Ridge National Laboratory Oak Ridge, Nov 26, 2002

2 2Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Where is Darmstadt ?

3 3Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Mission Statement Strong and weak interaction critically determine the structure of matter at the microscopic level Goal: Comprehensive and quantitative understanding Many-body aspects play an important role at all levels of the hierarchical structure of matter Goal: Investigate many-body effects in all scales

4 4Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Overview The Project Nuclear Structure Physics Nuclear Matter Physics Physics with Antiprotons Plasma Physics Atomic Physics Applications Construction Heating with Ions Extreme QED Cancer Therapy

5 5Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Radioactive Ion Beams RIB

6 6Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Nuclei The Quark-Gluon-Substructure: important consequences for the nucleus and the nuclear force exploration possible with beams of short-lived nuclei extreme conditions will reveal new features pushed to the limits in proton and neutron number far away from stability GSI experience played an important role in pioneering such beams first generation triggered considerable excitement next generation is mandatory to pursue the envisioned research opportunities primary beams: 100x more intensity secondary beams: 10000x more intensity The RIB Project

7 7Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Research Program Structure of the nuclei main binding: strong force against electroweak where are the very limits of nuclei new collective modes, shell structures, decay modes strangeness in the nucleon Nuclear astrophysics redraw pathways of nucleosynthesis iterate in collaboration with astrophysicists Fundamental interactions and symmetries e.g. measure V ud by superallowed Fermi transitions The RIB Project

8 8Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project The RIB Project Super-FRS: Large-Acceptance High- Resolution Spectrometer for Exotic Nuclei

9 9Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Precision Spectroscopy and Unique Applications The RIB Project Precision Experiments with Exotic Nuclei at Low Energies

10 10Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Experiments with Exotic Beams at High Energies ~20 m Beam cocktail (all unstable !) Reaction products after target 20 O beam 40 Ar primary beam The RIB Project

11 11Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Mass- and Lifetime Measurements Nuclear Reactions in the Internal Target Electron Scattering off Exotic Nuclei The RIB Project Experiments with Stored Exotic Nuclei

12 12Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project electron collector electron gun high voltage platform magnetic field electron beam ion beam 0.97 1 1.03 rel. ion velocity v/v 0 ion intensity before cooling after cooling Storage Rings and Traps: Cooled Ion Beams Same velocity for electrons reached with much smaller energies m e ~1/2000 m p

13 13Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Hadron Physics Proton-Antiproton @ Darmstadt PA N D A

14 14Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project MASS Physics Case MASS Understand the generation of mass Higgs is only responsible for about 2% of proton mass ! How can we understand the difference ? The PANDA Project

15 15Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project aSaS Q2Q2 Confinement asymptotic Freedom a QE D Q2Q2 e e e e  Leptons (e,,) couple to electric charge m u  3 MeV m d  6 MeV M p = 938 MeV g g g Quarks (u,d,s,c,b,t) couple to 3 q q q q m e = 0.5 MeV m p = 938 MeV E b = 13 eV Photon carries no charge QED - QCD The PANDA Project +- V r „String“ V r

16 16Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project QCD running coupling constant transition from pertubative to non-pertubative regime Q 2 [GeV 2 ]1010.10.05 perturbative QCDconstituent quark confinement mesons and baryons 00.10.31RnRn r [fm] Transition from the quark-gluon to the hadronic degrees of freedom pertubativestrong QCD The PANDA Project

17 17Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Physics Case cont’d QCD is confirmed to high accuracy at small distances At large distances, QCD is characterized by: Confinement Chiral symmetry breaking Challenge: Quantitative understanding of the relevant degrees of freedom in strongly interacting systems Experimental approach: Charm physics: Transition between the chiral and heavy quark limits Proton-Antiproton as a rich hadronic source The PANDA Project

18 18Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Hadrons are very complicated Standard model meson only one leading term Other colour neutral configurations may mix Decoupling is possible only if states are narrow Charmonium leading term vanishes Exotic States The PANDA Project

19 19Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project 3 GeV/c Hypernuclei 3rd dimension (strangeness) of the nuclear chart New Era: high resolution -spectroscopy Double-hypernuclei: very little data Baryon-baryon interactions: -N only short ranged (no 1 exchange due to isospin) - impossible in scattering reactions secondary target  - (dss) p(uud)   (uds)  (uds) Trigger -- K+K The PANDA Project

20 20Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project The Antiproton Facility Antiproton production similar to CERN, HESR = High Energy Storage Ring Production rate 10 7 /sec P beam = 1.5 - 15 GeV/c N stored = 5 x 10 10 p High luminosity mode Luminosity = 2 x 10 32 cm -2 s -1 p/p ~ 10 -4 (stochastic cooling) High resolution mode p/p ~ 10 -5 (electron cooling < 8 GeV/c) Luminosity = 10 31 cm -2 s -1 The PANDA Project

21 21Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Proposed Detector High Rates Total  ~ 55 mb Vertexing ( p,K S,,…) Charged particle ID (e ±, ±, ±,p,…) Magnetic tracking Elm. Calorimetry (, 0,) Forward capabilities (leading particles) Sophisticated Trigger(s) The PANDA Project

22 22Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Compressed Baryonic Mattter CBM

23 23Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Temperature [MeV] 200 100 01Net Baryon Density Quarks and Gluons Critical Point? Colour Super- Conductor? Nuclei Hadrons Early Universe Neutron stars Deconfinement & chiral transition RHIC & LHC GSI SIS 200+ The CBM Project Matter at High Densities: Phase diagram C ompressed B aryonic M atter

24 24Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project The CBM Project Matter at High Densities C ompressed B aryonic M atter

25 25Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Physics Case Tri-critical point (phase transition J/ suppression at high baryon densities In-medium change of hadron properties Equation of state (neutron stars) Effective degrees of freedom The CBM Project C ompressed B aryonic M atter

26 26Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project An Ion-Ion Collision (U+U) The CBM Project C ompressed B aryonic M atter

27 27Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Simulated Event 700 – 1000 charged particles per event  + 328  - 357 p161 K + 41 K - 13  - 9  + 8 The CBM Project beam C ompressed B aryonic M atter

28 28Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Requirements PID: Identification of electrons and hadrons 2 electron detectors: pion suppression by 10 4 -10 5 Reconstruction of particle vertices with high resolution 1000 charged particles in central Au+Au collisions at 25 AGeV Rate: 10 7 Au+Au reactions/sec beam intensities up to 10 9 ions/sec, 1% interaction target Good momentum resolution Large acceptance The CBM Project C ompressed B aryonic M atter

29 29Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Detector Concept Magnetic field 1-2T Silicon pixel/strip detectors: , , ,  RICH: particles with  = 10-100: electrons, (pions, kaons) TRD: electrons   2000: J/ TOF: start (diamond pixel detector) and stop (RPC): particle identification for pions, kaons, protons, … All needed for D-mesons Trigger: 1. level: reactions, centrality, hits in TRD and RICH 2. level: electrons, momentum, hit matching, rings in RICH 3. level: displaced vertex The CBM Project 2 n d Generation Fixed Target Expt C ompressed B aryonic M atter

30 30Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Detector Layout The CBM Project HADES CBM A+A at 2-8 AGeV A+A at 8-40 AGeV C ompressed B aryonic M atter

31 31Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Effective Masses In solid states we see effective electron masses Polarizable Media  microscopic friction Newtonian relation  F = m eff a (m eff >m 0 ) Same for macroscopic friction Since QCD Vacuum is strongly polarized  huge effect

32 32Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project free e -  in vacuum e - in crystal  in dielectrica dispersion relation E(k) effective mass F = m* a Particles in polarizable Media

33 33Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Hadrons in Nuclear Matter f*  = 0.78f  Collaboration Nava, GSI, Munich, Jülich, Tokyo, Niigata, RIKEN Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms

34 34Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Hadrons in Nuclear Matter Nucleus-Nucleus CollisionsProton-Proton Collisions KaoS Collaboration TU Darmstadt, Frankfurt, GSI Darmstadt, Marburg, Cracow, Rossendorf Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution

35 35Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. DD 50 MeV D D+D+ vacuum nuclear medium  K 25 MeV 100 MeV K+K+ KK   Hadrons in Nuclear Matter

36 36Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project bare D + D - 10 -2 10 -1 1 10 10 2 10 3  (nb) 4567 Open Charm in the Nuclei The expected signal: strong enhancement of the D-meson cross section, relative D + D - yields, in the near/sub-threshold region. This probes ground state nuclear matter density and T~0 Complementary to heavy ion collisions D+D+ in-medium free masses T (GeV) D-D- C ompressed B aryonic M atter

37 37Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Charmonium in the Nuclei Lowering of the D + D - mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width ( 3770 )=2040 MeV  c2 =0,322,7 MeV Experiment: Dilepton-Channels Idea Study relative changes of yield and width of the charmonium states.

38 38Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project The GSI Future Facility Existing GSI Facilities Hadron Physics Plasma Physics Condensed Baryonic Matter Atomic Physics Rare Isotope Beams

39 39Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project GSI Facility Characteristics

40 40Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Primary Beams 10 12 /s; 1.5 GeV/u; 238 U 28+ Factor 100-1000 over present in intensity 4x10 13 /s 30 GeV protons 10 10 /s 238 U 73+ up to 25 (- 35) GeV/u GSI Facility Characteristics

41 41Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Primary Beams 10 12 /s; 1.5 GeV/u; 238 U 28+ Factor 100-1000 over present in intensity 4x10 13 /s 30 GeV protons 10 10 /s 238 U 73+ up to 25 (- 35) GeV/u Secondary Beams Broad range of radioactive beams up to 1.5 - 2 GeV/u Up to factor 10 000 over present in intensity 10 11 stored and cooled 3(0) - 15 GeV antiprotons GSI Facility Characteristics

42 42Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Cooled beams Rapidly cycling superconducting magnets Primary Beams 10 12 /s; 1.5 GeV/u; 238 U 28+ Factor 100-1000 over present in intensity 4x10 13 /s 30 GeV protons 10 10 /s 238 U 73+ up to 25 (- 35) GeV/u Secondary Beams Broad range of radioactive beams up to 1.5 - 2 GeV/u Up to factor 10 000 over present in intensity 10 11 stored and cooled 3(0) - 15 GeV antiprotons Key Technical Features GSI Facility Characteristics

43 43Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project 0% 50% 100% Radioactive Beams Nucleus-Nucleus Collisions Antiprotons Plasma-Physics 100 Tm Ring 200 Tm Ring Collector & Storage Ring High-Energy Storage Ring Nucleus-Nucleus 100 sec Radioactive Beams Plasma Physics Antiprotons Duty-Cycles of the Accelerator RingsDuty-Cycles of the Physics Programs Parallel Operation

44 44Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Staged Realization

45 45Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Working Groups on Long-Term Perspectives of GSI Deep-inelastic electron-nucleon and electron-nucleus scattering at  s = 20 – 30 GeV Conveners: V. Metag (GSI), D. v. Harrach (Mainz), A. Schäfer (Frankfurt) X-ray spectroscopy and radiation physics Conveners: J. Kluge (GSI), H. Backe (Mainz), G. Soff (Dresden) Nuclear collisions at maximum baryon density Conveners: P. Braun-Munzinger (GSI), R. Stock (Frankfurt), J. P. Blaizot (Saclay) Physics with secondary beams Conveners: U. Lynen (GSI), D. Frekers (Münster), J. Wambach (Darmstadt) Nuclear structure with radioactive beams Conveners: G. Münzenberg (GSI), D. Habs (LMU München), H. Lenske (Gießen), P. Ring (TU München) Plasma physics with heavy ion beams Conveners: R. Bock (GSI), D.H.H. Hoffmann (Erlangen), J. Meyer-ter-Vehn (IPP München) Accelerator studies (electron-nucleon/nucleus collider) Conveners: K. Blasche (GSI), J. Maidment (DESY), B. Autin (CERN), N. S. Dikansky (Novosibirsk) Accelerator studies (high intensity option) Convener: D. Böhne (GSI) Short Pulse/High Power Lasers Convener: J. Kluge (GSI) Letter of Intent: "Construction of a GLUE/CHARM Factory at GSI" Editorial Board:B. Franzke (GSI) P. Kienle (Munich) H. Koch (Bochum) W. Kühn (Gießen) V. Metag (Gießen) U. Wiedner (CERN & Uppsala) Contributions from W. Cassing (Gießen), S. Paul (Munich), J. Pochodzalla (Heidelberg), M. Soyeur (Saclay) and J. Wambach (Darmstadt) and many members of the Hadron Working Group for GSI. more than 20 Workshops on science and technical aspects of the GSI future facility Evaluation of the German Wissenschaftsrat “Stellungnahme zu neun Großgeräten der naturwissenschaftlichen Grundlagenforschung und zur Weiterentwicklung der Investitionsplanung von Großgeräten“ Activities in Connection with the GSI Plans

46 46Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Contributors to the CDR

47 47Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Realization/Cost Civil Construction~ 225 M€ Accelerator Components ~ 265 M€ Instrumentation and Major Detectors ~ 185 M€ ~ 675 M€ Year 200X + 6 years commissioning Year 200X + 8 years regular data taking

48 48Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Summary and Outlook

49 49Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Electroweak Force Electromagnetic Force QED Weak Force Standard Model Strong Force QCD Gravitational Force General Relativity galaxy 10 21 m matter 10 -1 m crystal 10 -9 m atom 10 -10 m atomic nucleus 10 -14 m <10 -18 m electron quark nucleon 10 -15 m DNA 10 -8 m Research with Beams of Hadrons and Ions quark-gluon plasma excited vacuum HI Beams  12 TW/g RIBs  1.5 – 2 GeV/u Antiprotons 0-15(30) GeV Relativ. HI  35 GeV/u Ion-Matter Interactions Dense Plasmas Ultra High EM Fields Nuclei at the Extremes Quark Gluon Structure of Hadrons Quark Matter Structure of Matter

50 50Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project time temperature 15 billion years 1 billion years 300.000 years 3 minutes 1/1000 of a second 3 K 20 K 3.000 K 10 9 K 10 12 K Novae, supernovae compressed nuclear matter Synthesis of heavy elements r-process and rp-process HI Beams  12 TW/g RIBs  2 GeV/n Antiprotons 0-15(30) GeV Relativ. HI  35 GeV/n Nuclear Physics in the Universe Neutron stars – strangeness matter Synthesis of light elements Dark matter Chiral symmetry breaking Quark-gluon plasma Research with Beams of Hadrons and Ions

51 51Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project Astrophysics Fundamental symmetries and interactions Structure of nuclei: the nuclear many-body system far from stability The phases of QCD/quark-gluon plasma Quark-gluon structure of hadrons and the origin of the nuclear force Nuclear Physics and Its New Frontiers GSI

52 52Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project More Information http://www.gsi.de/GSI-Future/project/eng/index.php http://www.gsi.de/GSI-Future/cdr/ http://www.gsi.de/GSI-Future/project/eng/i/pdf_e.gif


Download ppt "The GSI Future Project Klaus Peters Ruhr-Universität Bochum University of Tennessee Knoxville, Nov 25, 2002 Oak Ridge National Laboratory Oak Ridge, Nov."

Similar presentations


Ads by Google