Download presentation
Presentation is loading. Please wait.
Published byLynne Wiggins Modified over 9 years ago
1
Unfolding an Indoor Origami World David Fouhey, Abhinav Gupta, Martial Hebert 1
2
2
3
3
4
Local Evidence 4 Hoiem et al. 2005, Saxena et al. 2005, Fouhey et al. 2013, etc.
5
Constraints 5
6
Constraints for Single Image 3D 6 Local Smoothness Low Level, Generic Hoiem et al. 2005, Saxena et al. 2005, 2008, Munoz et al., 2009, etc.
7
Constraints for Single Image 3D 7 Local Smoothness Low Level, Generic Hoiem et al. 2005, Saxena et al. 2005, 2008, Munoz et al., 2009, etc.
8
Constraints for Single Image 3D 8 Low Level, Generic High Level, Physical
9
High Level, Physical Constraints for Single Image 3D 9 Local Smoothness Low Level, Generic Coughlan and Yuille 2000, etc.
10
High Level, Physical Constraints for Single Image 3D 10 Local Smoothness Low Level, Generic Hedau et al. 2009, Del Pero et al., 2011, Wang et al., 2012, Schwing et al. 2012, etc.
11
High Level, Physical Constraints for Single Image 3D 11 Local Smoothness Low Level, Generic Lee et al. 2010, Xiao et al. 2012, Zhao et al. 2013, Schwing et al., 2013, etc.
12
High Level, Physical Constraints for Single Image 3D 12 Low Level, Generic
13
Mid-level in the Past 13 Huffman 71, Clowes 71, Kanade 80, 81 Sugihara 86, Malik 87, etc.
14
Our Mid-Level Constraints 14
15
This Work 15 Input: Single Image Output: Discrete Scene Parse
16
Overview 16 ParameterizationFormulation Experimental Results
17
Overview 17 ParameterizationFormulation Experimental Results
18
Parameterization 18
19
Parameterization 19 vp 1 vp 2 vp 3 VP Estimator from Hedau et al., 2009
20
Parameterization 20 Two VPs give grid cell
21
Encoding Surface Normals 21
22
Encoding Surface Normals 22
23
Encoding Surface Normals 23
24
Encoding Surface Normals 24 x 1,…, x 400 x 401,…, x 800 x 801,…, x 1200
25
Related Parameterizations 25 vp 1 vp 3 x2x2 x1x1 x3x3 x4x4 Hedau et al., 2009; Wang et al. 2010, Schwing et al., 2012, 2013 vp 2
26
Overview 26 ParameterizationFormulation Experimental Results
27
Parameterization 27
28
Formulation 28
29
Unaries 29
30
Unaries 30 Low c Any 3D Evidence High c
31
Unaries 31 … Input3D Primitive Bank Local: Data-Driven 3D Primitives Fouhey, Gupta, Hebert, 2013
32
Unaries 32 Hedau, Hoiem, Forsyth, 2009 Global: Cuboid Fit + Clutter Mask InputPredicted WallsClutter Mask
33
Binaries 33
34
Convex/Concave Constraints 34 Convex (+) Concave (-)
35
Convex/Concave Constraints 35 Detected Concave (-)
36
Convex/Concave Constraints 36 Detected Concave (-)
37
Convex/Concave Constraints 37 Detected Concave (-)
38
Convex/Concave Constraints 38 Detected Concave (-)
39
Convex/Concave Constraints 39 Detected Concave (-)
40
Detecting Convex/Concave 40 Ground-Truth Discontinuities similar to Gupta, Arbelaez, Malik, 2013 3DP from Fouhey, Gupta, Hebert, 2013 Input3D Primitive Bank … Use 3DP to Transfer Discontinuities
41
Smoothness 41
42
Constraints 42
43
Solving the Model 43
44
Overview 44 ParameterizationFormulation Experimental Results
45
Dataset NYU Depth v2: 795 Train, 654 Test 45
46
Qualitative Results 46
47
Qualitative Results 47
48
Qualitative Results 48
49
Qualitative Results 49
50
Surface Connection Graphs 50 ConvexConcave
51
Baseline Primary Baseline: 3D Primitives (3DP) 51 Fouhey, Gupta, Hebert, 2013 OutputInput
52
Quantitative Results 52 Summary Stats (⁰) (Lower Better) % Good Pixels (Higher Better) 11.25⁰22.5⁰30⁰MeanMedian 3DP 35.952.057.8 36.020.549.4 Hedau et al.34.249.354.440.023.554.1 RMSE Lee et al.18.638.649.943.336.354.6 Proposed37.653.358.935.119.248.7
53
Quantitative Results 53
54
Failure Modes Mistaken but Confident Evidence 54
55
Failure Modes 55 Missing High-Level Modeling
56
Conclusions 56 Single Image Parameterization Formulation Discrete Parse
57
Thank You 57
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.