Download presentation
Presentation is loading. Please wait.
Published bySteven Newman Modified over 9 years ago
1
An Improvement on Authenticated Key Agreement Scheme Authors: Chin-Chen Chang and Shih-Yi Lin Source: 2007 International Conference on Intelligent Pervasive Computing, 11-13 Oct. 2007, pp. 3 - 6 Presenter: Jung-wen Lo ( 駱榮問 )
2
2 Outline Introduction Notation Lee-Lee ’ s Scheme Weakness of Lee-Lee ’ s scheme Proposed scheme Conclusions & Comment Improved Lee-Lee ’ s Scheme1 Improved Lee-Lee ’ s Scheme2 Improved Chang-Lin ’ s scheme
3
3 Introduction Key agreement types Based on public key techniques Heavy computational overhead Based on passwords Popular approach Simplicity & convenience Diffie-Hellman key agreement Vulnerable to man-in-the-middle attack Narn-Yih Lee and Ming-Feng Lee, “ Further improvement on the modified authenticated key agreement scheme, ” Applied Mathematics and Computation, Vol. 157, pp. 729 – 733, 2004. Keon-Jik Lee and Byeong-Jik Lee, “ Cryptanalysis of the modified authenticated key agreement scheme, ” Applied Mathematics and Computation, Vol. 170, pp. 280 – 284, 2005.
4
4 Notation
5
5 Lee-Lee ’ s Scheme Alice (Q) Bob (Q) Random a X a =g aQ mod p K a =1 => abandon Random b Y b =g bQ mod p h(ID a,X a,K b ) ?= h(ID a,X a,K a ) XaXa YbYb h(ID a,X a,K a ) Key Establishment Phase Key Validation Phase h(ID b,Y b,K b ) h(ID b,Y b,K a ) ?= h(ID b,Y b,K b )
6
6 Weakness of Lee-Lee ’ s scheme Eve: Chose one pw’ Q’ Alice (Q) Bob (Q) Random a X a =g aQ mod p Random b Y b =g bQ mod p XaXa Y’ b =g mod p Key Establishment Phase Eve X’ a =g mod P YbYb K’ a =1 => abandon h(ID a,X a,K’ a ) Key Validation Phase
7
7 Proposed scheme Alice (A)Bob (B) Random a M 1 =(g a mod p) h(ID a,Q,t a ) Check t a g a =M 1 h(ID a,Q,t a ) Random b,r K b =(g a ) b mod p M 2 =(g b mod p) h(ID b,Q,t b ) M 3 =E[M 2,r] Kb M 1,t a M 2,M 3,t b M4M4 Check t b g b =M 2 h(ID b,Q,t b ) K a =(g b ) a mod p (M 2,r)=D[M 3 ] ka M 4 =E[r] ka r=D[M 4 ] kb
8
8 Conclusions & Comment Conclusions Authenticated key agreement Resistance to replay attack and off-line password attack Perfect forward secrecy Comments Improved Lee-Lee’s scheme Improved Chang-Lin’s scheme Reduce the computation load
9
9 Improved Lee-Lee ’ s Scheme1 Alice (Q) Bob (Q) Random a X a =g aQ mod p K a =1 or g a/Q => abandon Random b Y b =g bQ mod p h(ID a,X a,K b ) ?= h(ID a,X a,K a ) XaXa YbYb h(ID a,X a,K a ) Key Establishment Phase Key Validation Phase h(ID b,Y b,K b ) h(ID b,Y b,K a ) ?= h(ID b,Y b,K b )
10
10 Improved Lee-Lee ’ s Scheme2 Alice (Q) Bob (Q) Random a X a =g a mod p K a =1 => abandon Random b Y b =g b mod p h(ID a ||Q||K b ) ?= h(Id a ||Q||K a ) X a h(Q) Y b h(Q) h(ID a ||Q||K a ) Key Establishment Phase Key Validation Phase h(ID b ||Q||K b ) h(ID b ||Q||K a ) ?= h(ID b ||Q || K b ) K a =(Y b ) a mod p =g ab mod p K b =(X a ) b mod p =g ab mod p
11
11 Improved Chang-Lin ’ s scheme Alice (A)Bob (B) Random a M 1 =(g a mod p) h(ID a,Q,t a ) Check t a g a =M 1 h(ID a,Q,t a ) Random b,r K b =(g a ) b mod p M 2 =(g b mod p) h(ID b,Q,t b ) M 3 =r K b M 1,t a M 2,M 3,t b M4M4 Check t b g b =M 2 h(ID b,Q,t b ) K a =(g b ) a mod p r=M 3 k a M 4 =h(Q,r,k a ) M 4 ?=h(Q,r,k b ) Chang-Lin: E[.]+D[.] in A,B Ours: +h(.) in A,B
12
12 Diffie-Hellman Key Agreement Protocol Alice Bob Random a X A =g a mod p K=(Y B ) a mod p =g ab mod p Random b Y B =g b mod p K=(X A ) b mod p =g ab mod p A XAXA YBYB
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.