Download presentation
Presentation is loading. Please wait.
Published byDerek O’Connor’ Modified over 9 years ago
1
04/19/10 EXTRACELLULAR MATRIX PROTEINS AND PROTEINASES By, Raghu Ambekar Photonics Research of Bio/nano Environments Department of Electrical & Computer Engineering University of Illinois Urbana - Champaign BioE 506
2
04/19/10 Outline Extracellular matrix proteins Collagen Classification Fibril assembly and collagen diseases Extracellular matrix proteinases Role of MMP in metastasis Modification of tumor collagen for therapeutics
3
04/19/10 Extracellular matrix (ECM) Surrounds cell Provides mechanical support Controls the flow of nutrients and signals to the cells Consists of Fibrous: collagen, elastin, fibronectin, laminin Non-fibrous: Proteoglycans and polysaccharides http://kentsimmons.uwinnipeg.ca/cm1504
4
04/19/10 Collagen Collagen : most abundant protein found in the human body. About 1/3 rd of the total proteins. Found abundantly in tendon, cartilage, bone and skin Functions: cell migration cell adhesion molecular filtration tissue repair
5
04/19/10 Structure of collagen It has a triple-helix structure containing three α-polypeptide chains arranged in right-handed supercoil Glycine, proline, hydroxyproline 1.5 nm diameter At least 28 different collagens found The three α-chains could be same (collagen II) or different (collagen I) Collagen molecule
6
04/19/10 Classification of collagen No interruptions in triple helix Regular arrangement results in characteristic “D” period of 67 nm Diameter : 50-500 nm Example : Types I, II, III, V, XI 1. Fibril-forming collagens
7
04/19/10 Classification of collagen Forms network in basement (Collagen IV) and Descemet’s membrane (Collagen VIII) Molecular filtration Example : Types IV, VIII, X 2. Network-forming collagens
8
04/19/10 Classification of collagen Short collagens with interruptions Linked to collagen II and carries a GAG chain Found at the surface of fibril-forming collagens Example : Types IX, XII, XIV 3. Fibril-associated collagens with interrupted triple helices (FACITs)
9
04/19/10 Classification of collagen Provides functional integrity by connecting epithelium to stroma Example : Type VII 4. Anchoring collagens
10
04/19/10 Classification of collagen Form structural links with cells Example : Type VI Collagen VI crosslink into tetramers that assemble into long molecular chains (microfibrils) and have beaded repeat of 105 nm 5. Beaded-filament-forming collagens
11
04/19/10 Type I Fibril assembly Chain recognition sequence Fibril assembly is determined by chain recognition sequence in C-propeptide Fish scale Bone osteon Tendon Skin
12
04/19/10 Diseases associated with collagen Diseases caused by mutations Subtypes of osteogenesis imperfecta (collagen I) Ehlers-Danlos syndrome (collagen I and V) Alport syndrome (collagen IV) Certain arterial aneurysms (collagen III) Ullrich muscular dystrophy (collagen VI) Certain chondrodysplasias (collagen IX and XI) Kniest dysplasia (collagen II)
13
04/19/10 Role of MMP in metastasis Metastasis Spread of cancer from a primary tumor to distant sites of the body A defining feature of cancer
14
04/19/10 Role of MMP in metastasis Understanding the molecular mechanisms of metastasis is crucial for the design of therapeutics Extracellular matrix metalloproteinases (MMP) associated with metastasis MMPs are capable of digesting ECM and basement membrane under physiologic conditions Collagenases degrade fibrillar collagen Stromelysins degrade proteoglycans and glycoproteins Gelatinases degrade nonfibrillar and denatured collagens At tumor sites, experiments have found Increased number of MMPs Increased levels of MMPs Reduced levels of TIMPs (Tissue inhibitors of metalloproteinases)
15
04/19/10 Role of MMP in metastasis Major role of MMPs was to facilitate the breakdown of physical barriers, thus promoting invasion, intravasation, extravasation and migration MMPs targeted for antimetastasis therapies
16
04/19/10 Role of MMP in metastasis Clinical trials of inhibiting MMPs to cure cancer have failed Metastasis is a complicated process MMPs contribute to every stage in tumor progression at both primary and metastatic sites Specific MMPs play a role in each stage of metastasis MMP 13, 14 – invasion MMP 9– angiogenesis Understand the role of the MMPs in each cancer setting
17
04/19/10 Modification of collagen for therapeutics Structure and content of collagen governs the delivery of therapeutic molecules in tumors Penetration of therapeutic molecules improved by developing agents that modify ECM and increase diffusion Detect tumor collagen noninvasively to quantify collagen content and estimate drug delivery characteristics
18
04/19/10 Modification of collagen for therapeutics Uses Second-harmonic generation (SHG) for imaging only collagen fibers Conditions : Non-centrosymmetric (collagen, microtubules) Lasers (high intensity) Advantages : No staining 3D imaging No photobleaching SAMPLE Red Wavelength=800 nm SHG: Blue Wavelength=400 nm Collagen stained red and imaged by fluorescence microscopy Collagen imaged by SHG microscopy
19
04/19/10 Modification of collagen for therapeutics SHG intensity collected from live imaging of collagen fibers provides an good estimate of diffusion coefficient in tumors
20
04/19/10 Modification of collagen for therapeutics Chronic relaxin treatment degrades tumor matrix and improve macromolecular diffusion in tumors 0 th day3 rd day6 th day9 th day12 th day THANK YOU!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.