Download presentation
1
Covalent Bonds The joy of sharing!
2
Covalent Bonds Covalent bonds: occur between two or more nonmetals; electrons are shared not transferred (as in ionic bonds) The result of sharing electrons is that atoms attain a more stable electron configuration.
3
Covalent Bonds Most covalent bonds involve:
2 electrons (single covalent bond), 4 electrons (double covalent bond, or 6 electrons (triple covalent bond).
4
Lewis structures (electron dot structures) show the structure of molecules. (Bonds can be shown with dots for electrons, or with dashes: 1 dash = 2 electrons) H2 HBr CCl4 O2 N2 CO
5
Lewis structures (electron dot structures) show the structure of molecules. (Bonds can be shown with dots for electrons, or with dashes: 1 dash = 2 electrons) H2 HBr CCl4 O2 N2 CO
6
Lewis structures (electron dot structures) show the structure of molecules. (Bonds can be shown with dots for electrons, or with dashes: 1 dash = 2 electrons) H2 HBr CCl4 O2 N2 CO
7
Lewis structures (electron dot structures) show the structure of molecules. (Bonds can be shown with dots for electrons, or with dashes: 1 dash = 2 electrons) H2 HBr CCl4 O2 N2 CO
8
Lewis structures (electron dot structures) show the structure of molecules. (Bonds can be shown with dots for electrons, or with dashes: 1 dash = 2 electrons) H2 HBr CCl4 O2 N2 CO
9
Lewis structures (electron dot structures) show the structure of molecules. (Bonds can be shown with dots for electrons, or with dashes: 1 dash = 2 electrons) H2 HBr CCl4 O2 N2 CO
10
Octet Rule Octet Rule: The representative elements achieve noble gas configurations (8 electrons) by sharing electrons.
11
Writing Lewis Structures
Select a skeleton for the molecule (the least electronegative element is usually the central element). Calculate N (the # of valence e- need by all atoms in the molecule of polyatomic ion. Calculate A (the # of electrons available). Calculate S (the # of electrons shared in the molecule) S = N – A Place the S electrons as shared pairs in the skeleton. Place the additional electrons as unshared pairs to fill the octet of every representative elements (except hydrogen!).
12
Lewis Structure Examples:
CBr3- N22- CO32- NH4+ CO2- OH- NO3- SO42-
13
Lewis Structure Examples:
CBr3- N22- CO32- NH4+ CO2- OH- NO3- SO42-
14
Lewis Structure Examples:
CBr3- N22- CO32- NH4+ CO2- OH- NO3- SO42-
15
Lewis Structure Examples:
CBr3- N22- CO32- NH4+ CO2- OH- NO3- SO42-
16
Lewis Structure Examples:
CBr3- N22- CO32- NH4+ CO2- OH- NO3- SO42-
17
Lewis Structure Examples:
CBr3- N22- CO32- NH4+ CO2- OH- NO3- SO42-
18
Lewis Structure Examples:
CBr3- N22- CO32- NH4+ CO2- OH- NO3- SO42-
19
Lewis Structure Examples:
CBr3- N22- CO32- NH4+ CO2- OH- NO3- SO42-
20
Electronegativity We’ve learned how valence electrons are shared to form covalent bonds between elements. So far, we have considered the electrons to be shared equally. However, in most cases, electrons are not shared equally because of a property called electronegativity.
21
Electronegativity The ELECTRONEGATIVITY of an element is: the tendency for an atom to attract electrons to itself when it is chemically combined with another element. The result: a “tug-of-war” between the nuclei of the atoms.
22
Electronegativity Electronegativities are given numerical values (the most electronegative element has the highest value; the least electronegative element has the lowest value) **See Figure 6-18 p. 169 (Honors) Most electronegative element: Fluorine (3.98) Least electronegative elements: Fr (0.70), Cs (0.79)
23
Electronegativity Notice the periodic trend:
As we move from left to right across a row, electronegativity increases (metals have low values nonmetals have high values – excluding noble gases) As we move down a column, electronegativity decreases. The higher the electronegativity value, the greater the ability to attract electrons to itself.
24
Nonpolar Bonds When the atoms in a molecule are the same, the bonding electrons are shared equally. Result: a nonpolar covalent bond Examples: O2, F2, H2, N2, Cl2
25
Polar Bonds When 2 different atoms are joined by a covalent bond, and the bonding electrons are shared unequally, the bond is a polar covalent bond, or POLAR BOND. The atom with the stronger electron attraction (the more electronegative element) acquires a slightly negative charge. The less electronegative atom acquires a slightly positive charge.
26
Polar Bonds H Cl Example: HCl Electronegativities: - + H = 2.20
27
Polar Bonds Example: H2O Electronegativities: H = 2.20 O = 3.44
28
Polar Bonds Example: H2O Electronegativities: H = 2.20 O = 3.44
29
Polar Bonds Example: H2O Electronegativities: H = 2.20 O = 3.44
30
Electronegativity Difference
Predicting Bond Types Electronegativities help us predict the type of bond: Electronegativity Difference Type of Bond Example 0.00 – 0.40 H-H 0.41 – 1.00 H-Cl 1.01 – 2.00 H-F 2.01 or higher Na+Cl- covalent (nonpolar) covalent (slightly polar) covalent (very polar) ionic
31
Polar Molecules A polar bond in a molecule can make the entire molecule polar A molecule that has 2 poles (charged regions), like H-Cl, is called a dipolar molecule, or dipole.
32
Polar Molecules The effect of polar bonds on the polarity of a molecule depends on the shape of the molecule. Example: CO2 O = C = O shape: linear *The bond polarities cancel because they are in opposite directions; CO2 is a nonpolar molecule.
33
Polar Molecules The effect of polar bonds on the polarity of a molecule depends on the shape of the molecule. Water, H2O, also has 2 polar bonds: But, the molecule is bent, so the bonds do not cancel. H2O is a polar molecule.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.