Download presentation
Presentation is loading. Please wait.
Published byLeonard Norton Modified over 9 years ago
1
A HYDROGRAPHIC AND BIO-CHEMICAL CLIMATOLOGY OF THE MEDITERRANEAN AND THE BLACK SEA: SOME STATISTICAL PITFALLS (modb.oce.ulg.ac.be/medar) Michel Rixen 1, Jean-Marie Beckers 2 and Catherine Maillard 3 The Color of Ocean Data Brussels, Belgium, November 2002 1. SOC, Southampton, UK (myr@soc.soton.ac.uk)yr@soc.soton.ac.uk 2.GHER, University of Liège, Belgium, (JM.Beckers@ulg.ac.be)JM.Beckers@ulg.ac.be 3. SISMER, Ifremer, Centre de Brest, BP70, 29280 Plouzane, France
3
Task I, II, III, V At 15:20 Recent advances in oceanographic data management of the Mediterranean and Black Seas: The MEDAR/MEDATLAS 2002 data base By C. Maillard and E. Balopoulos (France, Greece)
4
Objective analysis –Optimal interpolation (OI) (+ sub-optimal schemes) –Successive corrections (SC) (+ sub-optimal schemes) –Variational inverse model (VIM) (stat. Equiv. to OI) –…. Task IV: climatology
5
The Variational Inverse Model Dimensional analysis+Bessel K1 correlation function
6
Finite element mesh
7
VIM:no bias OI: Information crosses boundaries
8
Computational cost Field Error field OI VIM OI VIM
9
Climatology: some details 25 standard vertical levels (Obsolete: automatic QC: –data rejected if outside 3*std locally) Sandwell bathymetry at 2’ –Used for contours and FEM Reference field=climatic field –(semi-normed analysis) T,S,Alkalinity,DOX,NH4,NO2,NO3,PO4, SiO4,H2S,pH,Chl Climatologic, seasonal, monthly, inter-annual and decadal temporal windows when relevant 20km x 20 km, 8 km x8 km or 5 km x 5 km resolution Analyzed and error fields
10
A good example: enough data
11
Another good example: enough data
12
Even more good examples…
15
Alboran, 200m, many data Levantine basin, 200m, few data VIM and OI: statistical hypotheses - gaussian frequency distributions - statistics are homogeneous and isotrope - uncorrelated noise
16
Nitrite Salinity PhosphateSilicate Ph Temperature
17
Vertical distribution of temperature
18
Yearly distribution of salinity
19
Monthly distribution (salinity)
20
Ionian 1980 Months 2 1986 Months 3 4 9 1988 Months 7 1990 Months 10 11 1992 Months 5 1994 Months 1 Levantine 1984 Months 10 1986 Months 8 9 10 11 1988 Months 3 8 9 1990 Months 7 10 11 1994 Months 1 2 Temp Possible bias ? Temp
21
2D analysis appropriate?
22
PO4 at 30m: coastal (<18km) and/or shallow sounding (<50m)
23
With coastal data Without coastal data Difference Phosphate (mmole/m3)
24
Ionian (36-37 ºN, 19-20ºE)
25
Some potential problems… Statistical hypothesis Correlation length=100-300km, so at least 200- 2000 data homogeneously distributed needed! Few data at deeper levels: –extrapolate from upper levels? Coastal data bias beyond the physical diffusion/ advection through correlation length: in several areas the only existing data Last but not least: obvious errors in the raw data (e.g. instrument calibration)
26
Selection of robust fields Annual, seasonal and monthly climatology –Temperature, Salinity Annual and seasonal –Oxygen, Silicate, Phosphate –Hydrogen sulphide (H 2 S) in the Black Sea Annual only –Nitrate, Nitrite, PH, Ammonium, Alkalinity, Chlorophyll So far: (almost) the best we can do…
27
Future More data! Other parameters (e.g. ADCP, DIC, POM, DOC,…) Multivariate analysis and QC (bio-chemical data!) 3D Variational analysis? More high level final products Your feedback MEDAR Climatology: “modb.oce.ulg.ac.be/medar” Free access to - 2000 fields - 20000 figures - 600 animations
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.