Download presentation
Presentation is loading. Please wait.
Published byLynn McBride Modified over 9 years ago
1
732A02 Data Mining - Clustering and Association Analysis ………………… Jose M. Peña jose.m.pena@liu.se Constrained frequent itemset mining
2
A constraint C(.) is Monotone If C(A) then C(B) for all A, B st A B. E.g. A’ A. Antimonotone If C(A) then C(B) for all A, B st B A. Or, if not C(B) then not C(A) for all A, B st B A. E.g. support ≥ min_support. The apriori property applies to any antimonotone constraint. Constraints
3
sum(S.Price) v is monotone (positive prices). min(S.Price) v is monotone. range(S.Price) 15 is monotone. Itemset ab satisfies C So does every superset of ab ItemPrice a40 b0 c-20 d10 e-30 f30 g20 h-10 Constraints
4
sum(S.Price) v is antimonotone (positive prices). sum(S.Price) v is not antimonotone. range(S.Price) 15 is antimonotone. Itemset ab violates C So does every superset of ab ItemPrice a40 b0 c-20 d10 e-30 f30 g20 h-10 Constraints
5
ConstraintAntimonotoneMonotone v S noyes S V noyes S V yesno min(S) v noyes min(S) v yesno max(S) v yesno max(S) v noyes count(S) v yesno count(S) v noyes sum(S) v ( a S, a 0 ) yesno sum(S) v ( a S, a 0 ) noyes range(S) v yesno range(S) v noyes avg(S) v, { , , } No but convertible support(S) yesno support(S) noyes Constraints
6
Apriori algorithm + any constraint Database D Scan D C1C1 L1L1 L2L2 C2C2 C2C2 C3C3 L3L3 Constraint: Sum{S.price} < 5, where item price equals item id
7
Apriori algorithm + antimonotone constraint Database D Scan D C1C1 L1L1 L2L2 C2C2 C2C2 C3C3 L3L3 Constraint: Sum{S.price} < 5, where item price equals item id Prune search space
8
Apriori algorithm + monotone constraint Database D Scan D C1C1 L1L1 L2L2 C2C2 C2C2 C3C3 L3L3 Constraint: Sum{S.price} ≥ 5, where item price equals item id ☺ ☺ ☺ ☺ Does not prune search space but avoids constraint checking Not in the output, since they don’t satisfy the constraint
9
FP grow algorithm + antimonotone constraint Similar to Apriori (prune search space) Specific of FP grow (avoids constraint check) Remove items that do not satisfy the constraint. If the conditioning itemset α does not satisfy the constraint, then do not generate α nor its conditional database. Let β denote the frequent items in the conditional database of α. If α U β satisfies the constraint, then do not check the constraint in the conditional database of α.
10
If the conditioning itemset α satisfies the constraint, then do not check the constraint in its conditional database. FP grow algorithm + monotone constraint
11
avg(S.Price) v and avg(S.Price) ≥ v are neither monotone nor antimonotone. Convertible monotone If there exists an item order R such that If C(A) then C(B) for all A and B respecting R such that A is a suffix of B. E.g. avg(S.Price) ≥ v wrt decreasing price order. Convertible antimonotone If there exists an item order R such that If C(A) then C(B) for all A and B respecting R such that B is a suffix of A. Or, if not C(B) then not C(A) for all A and B respecting R such that B is a suffix of A. E.g. avg(S.Price) ≥ v wrt to increasing price order. Constraints
12
avg(X) 25 is convertible monotone wrt descending item price order R: If an itemset d satisfies a constraint C, so do itemsets fd and afd, which have d as a suffix. avg(X) 25 is convertible antimonotone wrt ascending item price item order R -1 : If an itemset dfa satisfies a constraint C, so do itemsets fa and a, which are suffixes of dfa. Thus, avg(X) 25 is strongly convertible. Check that avg(X) 25 is also strongly convertible. Constraints
13
Constraint Convertible antimonotone Convertible monotone Strongly convertible avg(S) , v Yes median(S) , v Yes sum(S) v (items could be of any value, v 0) YesNo sum(S) v (items could be of any value, v 0) NoYesNo sum(S) v (items could be of any value, v 0) NoYesNo sum(S) v (items could be of any value, v 0) YesNo ……
14
Constraints Convertible antimonotone Convertible monotone Strongly convertible Inconvertible Antimonotone Monotone avg(S)-median(S)=0
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.