Download presentation
Presentation is loading. Please wait.
Published byEaster Berry Modified over 9 years ago
1
AAT Injector Nozzle Test Chamber P15681 Calibration Fluid Exhaust System Zach Huston, Hayden Cummings, Adam Farnung, Tim Nichols, Robert Moshier, Andrew Heuser
2
Agenda Project Background Updated Requirements Chamber design Measurement System Action Items Fluid removal system
3
Background - AAT Advanced Atomization Technologies (AAT) Joint venture between General Electric Aviation and Parker Aerospace Specializes in manufacturing and testing fuel nozzles for gas turbine engines
4
Background - Project Fuel Injection Nozzle Testing System Qualifying fuel injection nozzles Specialized calibration equipment Expensive, odorous calibration fluid Problems with system Offensive odor permeates entire building Loss of expensive calibration fluid
5
Problem Definition All commercial aircraft nozzles must undergo a flow test to assure that requirements are met for spray angle. This test uses Stoddart Solvent (MIL-PRF-7024F Type II) Petroleum derived, clear, transparent liquid. The fluid is very expensive and has an offensive odor The current exhaust system is ineffective at both containing containing the odor and recovering the atomized fluid for reuse.
6
Project Schedule Represents Critical items
7
Customer Requirements
8
Engineering Requirements
9
Verification of Engr. Req.
10
Chamber Design Components: -Containment Chamber (Collection and containment of liquid cal fluid) -Airlock (Test location, isolation, purge) -Nozzle Fixture (Integration of both tests in one location, constrain and attach nozzle) -Gloves (Correct Material, ergonomics, attachment)
11
Full model
12
Ergonomic Analysis System must accommodate operator heights from 62” – 76” Shoulder width range: 16.1” – 17.7” Center to center glove separation 14” Range of distance from shoulder to ground: 50.7” – 62.17” Chamber will require 1 foot of adjustable vertical travel *For details on the anthropometric analysis reference System Level Design Documents on EDGE
13
Ergonomic Analysis 46” 62” To accommodate all operators and be safe to operate from the top and in the gloves the chamber requires 16” of travel
14
Nozzle fixture Overview: -Combines flow and angle testing in one location -Incorporates both nozzle block-offs for flow testing and measurement system for angle testing Roles in Engineering Requirements: - S4: “Elapsed Time”: does not add significant cycle time
15
Upper Door Overview: -Provides access to the nozzle fixture inside of the airlock -O-Ring sealed, solenoid locked (to be integrated into controls system) Roles in Engineering Requirements: -S1: “Air Quality”: Contains Calibration Fluid -S2: “Air Particle Removal”: Provides Seal for Vacuum -S8: “Calibration Fluid Leak”: Contains Calibration Fluid -S9: “Door Sealed During Operation” -S11: “Accessibility”: Easy Access for operator to Test Block
16
Gloves Overview: -‘Blast Chamber’ Style gloves -Allow operator access without exposure to fluid Roles in Engineering Requirements: -S1: “Air Quality”: Fluid does not leave chamber during operator interaction -S8: “Calibration Fluid Leak”: Calibration Fluid does not escape during operator interaction -S11: “Accessibility”: Easy Access for operator to Dual Block-off
17
Mid Chamber Valves Overview: -Ball valve interface between top and bottom chamber -Allows for separation of Air Lock from collected calibration fluid and smaller evacuation chamber Roles in Engineering Requirements: -S1: “Air Quality”: Liquid Cal fluid is isolated to completely closed portion of chamber -S3: “Liquid Drain Rate”: Easy Access for operator to Dual Block-off
18
Chamber Design Testing -Glove Pressure Testing: Several gloves samples were subjected to an air pressure of approximately 14.7 psi to test their structural stability to maximum internal chamber pressure. (Please see: subsystem testing, glove pressure test videos for more information) -Glove Material Exposure Testing: Samples of the same glove materials were exposed to the calibration fluid for two spans of time. Tests were performed on the samples post-exposure to record data for effects of the fluid on the materials. (Please see: subsystem testing, “Test Procedure Sheet (glove test).docx” for more information)
19
Bottom Chamber Overview: -Provides space for liquid calibration fluid to collect, separate from the air lock -Drain in bottom for line to fluid collection tank, recycled back into system Roles in Engineering Requirements: -S1: “Air Quality”: Liquid Cal fluid is isolated to completely closed portion of chamber -S3: “Liquid Drain Rate ”: Easy Access for operator to Dual Block-off -S8: “Calibration Fluid Leak”: Liquid Calibration Fluid is kept separate from rest of chamber, away from main openeing
20
Measurement
22
Fluids Subsystem Mist evacuation is needed to maintain visibility during test. The amount of air pulled from the system must be adjustable. Evacuating mist cannot influence the testing procedure. A two speed system combines low speed for visibility during test with high speed for fast mist evacuation at the end of the test.
23
Subsystem Flow By keeping the entire system sealed, no calibration fluid is allowed to escape. All aspects of the system are sealed including chamber doors, chamber drain, drain tank, mist collector system and mist collector drain. The test chamber will be automatically purged before allowing the chamber doors to be opened, eliminating the chance for an operator to come in contact with the atomized while also not allowing the atomized fluid to escape. Fluid that is pulled through the mist collector is returned to the drain tank. System is automated to reduce operator error.
24
Fluids Subsystem - Heart The heart of the subsystem is the AER Control System CM300. This unit is able to pull 300 cfm from the test chamber to quickly purge the system, while being throttled back during testing in order to not effect test results. Custom built unit will feature aluminum rotating drum to eliminate spark risk. Unit will be fitted with an activated carbon after filter to reduce any remaining odor. Filter can be replaced with ordinary activated carbon which is inexpensive and easily procured. Fluid removed via the collector will be returned to the drain tank.
25
Controls/ Integration
26
Risk Assessment
27
Remaining Risks RiskImportancePlan for MitigationCompletion Date Air / Fluid Leaks(27)(9)Test plan available on Edge under “Subsystem Test plans” ‘Test for Air Leaks in Chamber’ MSD II (Week 3-5) Nozzle Detaches27 Run test with different fittings to see which forms the best connection and is the easiest to install Week 14 Inability to interact with control system 9Determine I/O capabilities of test pressure control system Week15 Subsystem integration fail27Continue weekly updatesOngoing
28
Bill of Materials
29
Action Items Design Signed off by Jim Complete drawing package Make appointment with operators to perform glove simulation Compile purchase orders
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.