Presentation is loading. Please wait.

Presentation is loading. Please wait.

Accelerators Mark Mandelkern. For producing beams of energetic particles Protons, antiprotons and light ions heavy ions electrons and positrons (secondary)

Similar presentations


Presentation on theme: "Accelerators Mark Mandelkern. For producing beams of energetic particles Protons, antiprotons and light ions heavy ions electrons and positrons (secondary)"— Presentation transcript:

1 Accelerators Mark Mandelkern

2 For producing beams of energetic particles Protons, antiprotons and light ions heavy ions electrons and positrons (secondary) neutral beams (photons, neutrons, neutrinos)

3 Some accelerator applications particle and nuclear physics synchrotron radiation –materials science, biology medical radiation therapy isotope production plasma heating high energy X-ray production –non-destructive testing, food sterilization

4 Accelerators in particle physics probe small-scale structure = h/p  10 -13 cm  p(MeV/c) electrons, positrons –Pointlike (also neutrinos), no strong interactions –costly to accelerate (synchrotron radiation) protons and antiprotons –complicated structures make interpretation difficult –easier to accelerate to ultra-high energies

5 Accelerator types electrostatic –battery, lightning, van de Graff, Pellatron: to about 30 MeV; for nuclear physics and isotope production cascade –Cockcroft-Walton: to several MeV; cheap; for X-ray sources and injectors Linear –RFQ –drift-tube(Wideroe, Alvarez):preaccelerators, LAMPF –Waveguide:electrons only(SLAC, NLC)

6 Pelletron

7 Van de Graff

8 Cockcroft-Walton principle

9 ISIS Cockcroft-Walton

10 Wideroe Linac

11 Alvarez Linac

12 Radiofrequency Quadrupole RFQ

13 SLAC Linac

14 SLAC Waveguide

15 Phase Stability

16 Circular Accelerators betatron –electrons only, cheap, portable, to ~500 MeV cyclotron –Protons to ~500 MeV (TRIUMF, PSI) Synchrotron –100 GeV electrons (LEP) –1 TeV protons and antiprotons (FNAL) –7 TeV protons (LHC)

17 Cyclotron animation

18 First cyclotron

19 TRIUMF

20 Strong focusing principle

21 Strong focusing animation

22 HEP Accelerator Systems FNAL Tevatron(1 TeV p) –CW(750 keV):Linac:Booster(8 GeV):Main Injector(120 GeV): Tevatron Ring CERN SPS/LEP(400 GeV p/100 GeV e +-) –RFQ (750 keV):Linac (50 MeV):PS(28 GeV):SPS:LEP

23 FNAL Tevatron Tunnel

24 Synchrotron radiation W=(e 2 /   )(  4    R) loss per turn E c =(hc/2  3    2R) peak energy  E/mc 2 LEP: 100 GeV/beam: R=4.9km W~3 GeV E c ~ 90 keV(hard X-ray) 288 SC RF cavities  evatron: E=1 TeV R=1.1km W~ 10 eV E c ~0.4 eV LHC: E=7 TeV R=4.9 kmW~5 keV, E c ~27 eV

25 Colliders Circular –e - e + below 10 GeV (BEPS/PEP-2/KEKB) –1 TeV p/1 TeV pbar (Tevatron-FNAL), –27.5 GeV e - /920 GeV p (HERA-DESY) –105 GeV e - /105 GeV e + (LEP-CERN) –7 TeV p/7TeV p (LHC-CERN) Linear – 50 GeV e - /50 GeV e + (SLC-SLAC) –~1 TeV e - /~1 TeV e + (NLC-?)

26 Why Colliders? Fixed target (pp) –E cm 2 =m b 2 +m t 2 +2E b m t –E b =1 TeV m b =m t =0.938 GeV E cm =43.3 GeV Symmetrical Collider –E cm =E b +E t –E b =E t = 1 TeV E cm =2 TeV

27 How Colliders? Event Rate = L  L=f n 1 n 2 /(4  x  y ) n 1 n 2 particles per bunch  x,  y rms horizontal (vertical) beam profile Thus intense bunched beams with tiny beam spots at the interaction points

28 LEP

29 LHC

30 SLC/NLC


Download ppt "Accelerators Mark Mandelkern. For producing beams of energetic particles Protons, antiprotons and light ions heavy ions electrons and positrons (secondary)"

Similar presentations


Ads by Google