Download presentation
Presentation is loading. Please wait.
Published byAileen Casey Modified over 9 years ago
1
Accelerators Mark Mandelkern
2
For producing beams of energetic particles Protons, antiprotons and light ions heavy ions electrons and positrons (secondary) neutral beams (photons, neutrons, neutrinos)
3
Some accelerator applications particle and nuclear physics synchrotron radiation –materials science, biology medical radiation therapy isotope production plasma heating high energy X-ray production –non-destructive testing, food sterilization
4
Accelerators in particle physics probe small-scale structure = h/p 10 -13 cm p(MeV/c) electrons, positrons –Pointlike (also neutrinos), no strong interactions –costly to accelerate (synchrotron radiation) protons and antiprotons –complicated structures make interpretation difficult –easier to accelerate to ultra-high energies
5
Accelerator types electrostatic –battery, lightning, van de Graff, Pellatron: to about 30 MeV; for nuclear physics and isotope production cascade –Cockcroft-Walton: to several MeV; cheap; for X-ray sources and injectors Linear –RFQ –drift-tube(Wideroe, Alvarez):preaccelerators, LAMPF –Waveguide:electrons only(SLAC, NLC)
6
Pelletron
7
Van de Graff
8
Cockcroft-Walton principle
9
ISIS Cockcroft-Walton
10
Wideroe Linac
11
Alvarez Linac
12
Radiofrequency Quadrupole RFQ
13
SLAC Linac
14
SLAC Waveguide
15
Phase Stability
16
Circular Accelerators betatron –electrons only, cheap, portable, to ~500 MeV cyclotron –Protons to ~500 MeV (TRIUMF, PSI) Synchrotron –100 GeV electrons (LEP) –1 TeV protons and antiprotons (FNAL) –7 TeV protons (LHC)
17
Cyclotron animation
18
First cyclotron
19
TRIUMF
20
Strong focusing principle
21
Strong focusing animation
22
HEP Accelerator Systems FNAL Tevatron(1 TeV p) –CW(750 keV):Linac:Booster(8 GeV):Main Injector(120 GeV): Tevatron Ring CERN SPS/LEP(400 GeV p/100 GeV e +-) –RFQ (750 keV):Linac (50 MeV):PS(28 GeV):SPS:LEP
23
FNAL Tevatron Tunnel
24
Synchrotron radiation W=(e 2 / )( 4 R) loss per turn E c =(hc/2 3 2R) peak energy E/mc 2 LEP: 100 GeV/beam: R=4.9km W~3 GeV E c ~ 90 keV(hard X-ray) 288 SC RF cavities evatron: E=1 TeV R=1.1km W~ 10 eV E c ~0.4 eV LHC: E=7 TeV R=4.9 kmW~5 keV, E c ~27 eV
25
Colliders Circular –e - e + below 10 GeV (BEPS/PEP-2/KEKB) –1 TeV p/1 TeV pbar (Tevatron-FNAL), –27.5 GeV e - /920 GeV p (HERA-DESY) –105 GeV e - /105 GeV e + (LEP-CERN) –7 TeV p/7TeV p (LHC-CERN) Linear – 50 GeV e - /50 GeV e + (SLC-SLAC) –~1 TeV e - /~1 TeV e + (NLC-?)
26
Why Colliders? Fixed target (pp) –E cm 2 =m b 2 +m t 2 +2E b m t –E b =1 TeV m b =m t =0.938 GeV E cm =43.3 GeV Symmetrical Collider –E cm =E b +E t –E b =E t = 1 TeV E cm =2 TeV
27
How Colliders? Event Rate = L L=f n 1 n 2 /(4 x y ) n 1 n 2 particles per bunch x, y rms horizontal (vertical) beam profile Thus intense bunched beams with tiny beam spots at the interaction points
28
LEP
29
LHC
30
SLC/NLC
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.