Download presentation
Presentation is loading. Please wait.
Published byEllen Williams Modified over 9 years ago
1
An Introduction to Time Series Ginger Davis VIGRE Computational Finance Seminar Rice University November 26, 2003
2
What is a Time Series? Time Series –Collection of observations indexed by the date of each observation Lag Operator –Represented by the symbol L Mean of Y t = μ t
3
White Noise Process Basic building block for time series processes
4
White Noise Processes, cont. Independent White Noise Process –Slightly stronger condition that and are independent Gaussian White Noise Process
5
Autocovariance Covariance of Y t with its own lagged value Example: Calculate autocovariances for:
6
Stationarity Covariance-stationary or weakly stationary process –Neither the mean nor the autocovariances depend on the date t
7
Stationarity, cont. 2 processes –1 covariance stationary, 1 not covariance stationary
8
Stationarity, cont. Covariance stationary processes –Covariance between Y t and Y t-j depends only on j (length of time separating the observations) and not on t (date of the observation)
9
Stationarity, cont. Strict stationarity –For any values of j 1, j 2, …, j n, the joint distribution of (Y t, Y t+j 1, Y t+j 2,..., Y t+j n ) depends only on the intervals separating the dates and not on the date itself
10
Gaussian Processes Gaussian process {Y t } –Joint density is Gaussian for any What can be said about a covariance stationary Gaussian process?
11
Ergodicity A covariance-stationary process is said to be ergodic for the mean if converges in probability to E(Y t ) as
12
Describing the dynamics of a Time Series Moving Average (MA) processes Autoregressive (AR) processes Autoregressive / Moving Average (ARMA) processes Autoregressive conditional heteroscedastic (ARCH) processes
13
Moving Average Processes MA(1): First Order MA process “moving average” –Y t is constructed from a weighted sum of the two most recent values of.
14
Properties of MA(1) for j>1
15
MA(1) Covariance stationary –Mean and autocovariances are not functions of time Autocorrelation of a covariance-stationary process MA(1)
16
Autocorrelation Function for White Noise:
17
Autocorrelation Function for MA(1):
18
Moving Average Processes of higher order MA(q): q th order moving average process Properties of MA(q)
19
Autoregressive Processes AR(1): First order autoregression Stationarity: We will assume Can represent as an MA
20
Properties of AR(1)
21
Properties of AR(1), cont.
22
Autocorrelation Function for AR(1):
24
Gaussian White Noise
25
AR(1),
28
Autoregressive Processes of higher order p th order autoregression: AR(p) Stationarity: We will assume that the roots of the following all lie outside the unit circle.
29
Properties of AR(p) Can solve for autocovariances / autocorrelations using Yule-Walker equations
30
Mixed Autoregressive Moving Average Processes ARMA(p,q) includes both autoregressive and moving average terms
31
Time Series Models for Financial Data A Motivating Example –Federal Funds rate –We are interested in forecasting not only the level of the series, but also its variance. –Variance is not constant over time
32
U. S. Federal Funds Rate
33
Modeling the Variance AR(p): ARCH(m) –Autoregressive conditional heteroscedastic process of order m –Square of u t follows an AR(m) process –w t is a new white noise process
34
References Investopia.com Economagic.com Hamilton, J. D. (1994), Time Series Analysis, Princeton, New Jersey: Princeton University Press.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.