Download presentation
Presentation is loading. Please wait.
Published byLindsey Terry Modified over 9 years ago
1
電機四 B00901013 李舜仁
2
Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 1 1
3
Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 2 2
4
Hallucination ? F ace H allucination-Introduction 3 3 Introduction
5
Face Hallucination F ace H allucination-Introduction 4 4 Face image super-resolution Low-resolution (LR) images Higher-resolution images
6
Super-resolution Enhance the resolution of an image. F ace H allucination-Introduction 5 5
7
Face hallucination employs typical face priors with strong cohesion to face domain concept. Ex. domain knowledge of the position of eyes, nose, mouth, etc. F ace H allucination-Introduction 6 6 Face Hallucination vs. Super-resolution
8
Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 7 7
9
Motivation F ace H allucination-Motivation 8 8 visual effect face recognition Why face hallucination data compression......
10
Face Recognition Problems: 1. Cheap surveillance camera 2. Long distance F ace H allucination-Motivation 9 9
11
Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 10
12
Algorithms Simplest: Interpolation Recent years: Learning from data training data: Y(HR) Y(LR) input: X(LR)target output: X(HR) F ace H allucination-Algorithms 11
13
Face hallucination based on Bayes theorem Super-resolution from multiple views using learnt image models Face Hallucination via Sparse Coding Face Hallucination by Eigentransformation Face hallucination based on MCA …… Introduction of methods based on co-occurrence model F ace H allucination-Algorithms 12 Algorithms
14
co-occurrence model F ace H allucination-Algorithms 13
15
Hallucinating face by position-patch Position patch: (Use domain knowledge) F ace H allucination-Algorithms 14 X. Ma, J. Zhang, and C. Qi, Pattern Recognition, 2010.
16
Position-patch based face hallucination using convex optimization C. Jung, L. Jiao, B. Liu, and M. Gong, Signal Processing Letters, 2011. F ace H allucination-Algorithms 15
17
Coupled-layer neighbor embedding for surveillance face hallucination J. Jiang, R. Hu, L. Chen, Z. Han, T. Lu, and J. Chen, in Proc. IEEE ICIP, 2013. F ace H allucination-Algorithms 16
18
Hallucinating face by eigen-transformation X. Wang and X. Tang, IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2005. F ace H allucination-Algorithms 17
19
An example of experimental results F ace H allucination-Algorithms 18
20
F ace H allucination-Algorithms 19 An example of experimental results
21
PSNR MAX = 255 (8 bit) F ace H allucination-Algorithms 20
22
Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 21
23
Future work Problems Sensitiveness of misalignment Unconstrained condition Pose F ace H allucination-Future work 22
24
Unconstrained condition In reality, there are… expressions, illuminations, occlusions, etc. F ace H allucination-Future work 23
25
Occlusion F ace H allucination-Future work 24
26
Occlusion F ace H allucination-Future work 25
27
Pose F ace H allucination-Future work 26
28
Multiview Face Hallucination F ace H allucination-Future work 27
29
Multiview Face Hallucination F ace H allucination-Future work 28
30
3D model F ace H allucination-Future work 29
31
Result F ace H allucination-Future work 30
32
Thank you !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.