Presentation is loading. Please wait.

Presentation is loading. Please wait.

電機四 B00901013 李舜仁. Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 1 1.

Similar presentations


Presentation on theme: "電機四 B00901013 李舜仁. Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 1 1."— Presentation transcript:

1 電機四 B00901013 李舜仁

2 Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 1 1

3 Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 2 2

4 Hallucination ? F ace H allucination-Introduction 3 3 Introduction

5 Face Hallucination F ace H allucination-Introduction 4 4 Face image super-resolution Low-resolution (LR) images Higher-resolution images

6 Super-resolution Enhance the resolution of an image. F ace H allucination-Introduction 5 5

7 Face hallucination employs typical face priors with strong cohesion to face domain concept. Ex. domain knowledge of the position of eyes, nose, mouth, etc. F ace H allucination-Introduction 6 6 Face Hallucination vs. Super-resolution

8 Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 7 7

9 Motivation F ace H allucination-Motivation 8 8 visual effect face recognition Why face hallucination data compression......

10 Face Recognition Problems: 1. Cheap surveillance camera 2. Long distance F ace H allucination-Motivation 9 9

11 Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 10

12 Algorithms Simplest: Interpolation Recent years: Learning from data training data: Y(HR) Y(LR) input: X(LR)target output: X(HR) F ace H allucination-Algorithms 11

13 Face hallucination based on Bayes theorem Super-resolution from multiple views using learnt image models Face Hallucination via Sparse Coding Face Hallucination by Eigentransformation Face hallucination based on MCA …… Introduction of methods based on co-occurrence model F ace H allucination-Algorithms 12 Algorithms

14 co-occurrence model F ace H allucination-Algorithms 13

15 Hallucinating face by position-patch Position patch: (Use domain knowledge) F ace H allucination-Algorithms 14 X. Ma, J. Zhang, and C. Qi, Pattern Recognition, 2010.

16 Position-patch based face hallucination using convex optimization C. Jung, L. Jiao, B. Liu, and M. Gong, Signal Processing Letters, 2011. F ace H allucination-Algorithms 15

17 Coupled-layer neighbor embedding for surveillance face hallucination J. Jiang, R. Hu, L. Chen, Z. Han, T. Lu, and J. Chen, in Proc. IEEE ICIP, 2013. F ace H allucination-Algorithms 16

18 Hallucinating face by eigen-transformation X. Wang and X. Tang, IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2005. F ace H allucination-Algorithms 17

19 An example of experimental results F ace H allucination-Algorithms 18

20 F ace H allucination-Algorithms 19 An example of experimental results

21 PSNR MAX = 255 (8 bit) F ace H allucination-Algorithms 20

22 Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 21

23 Future work Problems Sensitiveness of misalignment Unconstrained condition Pose F ace H allucination-Future work 22

24 Unconstrained condition In reality, there are… expressions, illuminations, occlusions, etc. F ace H allucination-Future work 23

25 Occlusion F ace H allucination-Future work 24

26 Occlusion F ace H allucination-Future work 25

27 Pose F ace H allucination-Future work 26

28 Multiview Face Hallucination F ace H allucination-Future work 27

29 Multiview Face Hallucination F ace H allucination-Future work 28

30 3D model F ace H allucination-Future work 29

31 Result F ace H allucination-Future work 30

32 Thank you !


Download ppt "電機四 B00901013 李舜仁. Outline Introduction Motivation Algorithms Future work F ace H allucination-Outline 1 1."

Similar presentations


Ads by Google