Presentation is loading. Please wait.

Presentation is loading. Please wait.

Baryogenesis, EDMs, and The Higgs Boson M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear,

Similar presentations


Presentation on theme: "Baryogenesis, EDMs, and The Higgs Boson M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear,"— Presentation transcript:

1 Baryogenesis, EDMs, and The Higgs Boson M.J. Ramsey-Musolf Wisconsin-Madison http://www.physics.wisc.edu/groups/particle-theory/ NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology FNAL Seminar, Oct 2008

2 What is the origin of baryonic matter ? Cosmic Energy Budget Baryons Dark Matter Dark Energy Explaining non-zero  B requires CP-violation and a scalar sector beyond those of the Standard Model (assuming inflation set  B =0) What are the implications of Higgs searches at LHC and Higgs studies at ILC for explaining the baryon asymmetry ? What are the quantitative implications of new EDM experiments for explaining the origin of the baryonic component of the Universe ? Leptogenesis: discover the ingredients: LN- & CP- violation in neutrinos Weak scale baryogenesis: test experimentally: EDMs & Higgs Boson Searches D. ChungWisconsin V. CiriglianoLANL B. GarbrechtWisconsin C. LeeLBL Y. LiWisconsin S. ProfumoUC Santa Cruz S. TulinCaltech G. ShaugnessyWisconsin PRD 71: 075010 (2005) PRD 73: 115009 (2006) JHEP 0607:002 (2006 ) JHEP 0807:010 (2007) ArXiv 0806.2693/hep-ph ArXiv 0808.1144/hep-ph Baryogenesis & EDMsHiggs Phenomenology PRD 75: 037701 (2007) PRD 77: 035005 (2008) V. BargerWisconsin P. LangackerIAS M. McCaskeyWisconsin D. O’Connell IAS G. ShaugnessyWisconsin M. WiseCaltech

3 Baryogenesis: Myths EW baryogenesis requires a light SUSY Higgs boson (m H < 120 GeV) EW baryogenesis requires SUSY with a light RH stop EDMs have nearly killed EW baryogenesis Leptogenesis is the most viable option

4 Outline I.Baryogenesis: General Features II.Computing Y B systematically: progress & challenges III.Illustrative phenomenology in MSSM: EDMs, Colliders, & DM IV.Probing EW phase transition w/ Higgs boson phenomenology

5 Baryogenesis: Ingredients Anomalous B-violating processesPrevent washout by inverse processes Sakharov Criteria B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967

6 EW Baryogenesis: Standard Model Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Anomalous Processes Different vacua:  (B+L)=  N CS Kuzmin, Rubakov, Shaposhnikov McLerran,… Sphaleron Transitions

7 EW Baryogenesis: Standard Model Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Increasing m h 1st order2nd order CP-violation too weak EWPT too weak Shaposhnikov

8 Baryogenesis: New Electroweak Physics Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition Is it viable? Can experiment constrain it? How reliably can we compute it? Quantum Transport CPV Chem Eq R-M et al Is it viable? Can experiment constrain it? How reliably can we compute it? Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (numerical) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD Systematic baryogenesis: SD equations + power counting V eff ( ,T): Requirements on Higgs sector extensions & expt’l probes

9 EDMs: New CPV? SM “background” well below new CPV expectations New expts: 10 2 to 10 3 more sensitive CPV needed for BAU? CKM

10 EWSB: Higgs? SM “background” well below new CPV expectations New expts: 10 2 to 10 3 more sensitive CPV needed for BAU? LEPEWWG LEP Exclusion Non-SM Higgs(es) ? EW Precision Data: 95% CL (our fit-GAPP)

11 Baryogenesis: EDMs & Colliders Cosmology LHC EDMs Theory

12 Baryogenesis: New Electroweak Physics Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition Is it viable? Can experiment constrain it? How reliably can we compute it? 90’s: Cohen, Kaplan, Nelson Joyce, Prokopec, Turok Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD “Gentle” departure from equilibrium & scale hierarchy Cirigliano, Lee, R-M,Tulin

13 Systematic Baryogenesis Goal: Derive dependence of Y B on parameters L new systematically (controlled approximations) Parameters in L new Bubble & PT dynamics CPV phases Departure from equilibrium Earliest work: QM scattering & stat mech New developments: non-equilibrium QFT

14 Quantum Transport & Baryogenesis Particle Propagation: Beyond familiar (Peskin) QFT LILI Assumptions: 1.Evolution is adiabatic 2.Spectrum is non-degenerate 3.Density is zero Electroweak Baryogenesis 1.Evolution is non-adiabatic: v wall > 0 -> decoherence 2.Spectrum is degenerate: T > 0 -> Quasiparticles mix 3.Density is non-zero

15 Quantum Transport & Baryogenesis Electroweak Baryogenesis 1.Evolution is non-adiabatic: v wall > 0 -> decoherence 2.Spectrum is degenerate: T > 0 -> Quasiparticles mix 3.Density is non-zero Scale Hierarchy: Fast, but not too fast Hot, but not too hot Dense, but not too dense  d =  v w (k /  << 1  p =  p /  << 1   =  / T << 1 Work to lowest, non- trivial order in  ’s Error is O (  ) ~ 0.1 Cirigliano, Lee, R-M Systematically derive transport eq’s from L new Competing Dynamics CPV Ch eq Cirigliano, Lee,Tulin, R-M

16 Quantum Transport Equations =+ + … + Expand in  d,p,  Currents CP violating sources Links CP violation in Higgs and baryon sectors Chiral Relaxation Strong sphalerons Producing n L = 0 S CPV  M,  H,  Y,  SS Approximations Neglect O (   ) terms Others under scrutiny R-M, Chung, Tulin, Garbrecht, Lee, Cirigliano From S-D Equations: S CPV  M,  H,  Y … Riotto, Carena et al, R-M et al, Konstandin et al R-M et al Objectives: Determine param dep of S CPV and all  s and not just that of S CPV Develop general methods for any model with new CPV Quantify theor uncertainties  Y >> other rates? (No) Majorana fermions ? (densities decouple) Particle-sparticle eq? Density indep thermal widths?

17 Illustrative Study: MSSM Neutralino Mass Matrix M1M1 -- M2M2 -m Z cos  sin  W m Z cos  cos  W m Z sin  sin  W -m Z sin  sin  W 0 0 0 0 -- -m Z cos  sin  W m Z cos  cos  W m Z sin  sin  W -m Z sin  sin  W M N = Chargino Mass Matrix M2M2  M C = T << T EW : mixing of H,W to     ~~ ~~ T ~T EW : scattering of H,W from background field ~~ T ~ T EW CPV Resonant CPV: M 1,2 ~ 

18 Baryon Number: MSSM HiggsinosSquarks Impt to compute both num and den consistently

19 Resonant CPV & Relaxation Huet & Nelson CP violationRelaxation

20 Baryon Number &  Y Cirigliano, Lee, R-M, Tulin g H tLtL tLtL tRtR Joyce, Prokopec, Turok our  Y previous  Y 

21 Baryogenesis: tan  effects Transport, Spectrum, & EDMs Small tan  negligible Y b,  effects tan  =20: impt Y b,  effects Canceling t,b (s)quark contributions Enhanced light stau contributions Small tan  : n left =5Q+4T + SUSY Chung,Garbrecht, R-M, Tulin: 0808.1144

22 Baryogenesis: New Electroweak Physics Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition Is it viable? Can experiment constrain it? How reliably can we compute it? 90’s: Cohen, Kaplan, Nelson Joyce, Prokopec, Turok Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD Elementary particle EDMs: N>>1 Engel,Flambaum, Haxton, Henley, Khriplovich,Liu, R-M Many-body EDMs:

23 EDMs: Complementary Searches Electron Improvements of 10 2 to 10 3 Neutron Neutral Atoms Deuteron QCD

24 EDMs: Theory Electron Improvements of 10 2 to 10 3 Neutron Neutral Atoms Deuteron QCD Nuclear Schiff Moment Nuclear EDM: Screened in atoms Neutron EDM from LQCD: Two approaches: Expand in  & average over topological sectors (Blum et al, Shintani et al) Compute  E for spin up/down nucleon in background E field (Shintani et al) m N =2.2 GeV QCD SR (Pospelov et al) Hadronic couplings Pospelov et al: PCAC + had models & QCD SR ChPT for d n : van Kolck et al Schiff Screening Atomic effect from nuclear finite size: Schiff moment

25 EDMs & Schiff Moments One-loop EDM: q, l, n…Chromo-EDM: q, n… Dominant in nuclei & atoms Engel & de Jesus: Reduced isoscalar sensitivity (  QCD ) Schiff Moment in 199 Hg Nuclear & hadron structure ! Liu et al: New formulation of Schiff operator + … New nuclear calc’s needed !

26 One Loop EDMs & Baryogenesis T ~ T EW Resonant Non-resonant Cirigliano, Lee, Tulin, R-M Future d e d n d A

27 EDMs in SUSY One-loop EDM: q, l, n…Chromo-EDM: q, n… Dominant in nuclei & atoms

28 EDMs in SUSY One-loop EDM: q, l, n…Chromo-EDM: q, n… Dominant in nuclei & atoms Two-loop EDM only: no chromo-EDMWeinberg: small matrix el’s Decouple in largelimit

29 EDM constraints & SUSY CPV AMSB: M 1 ~ 3M 2 BaryogenesisLEP II ExclusionTwo loop d e Cirigliano, Profumo, R-M SUGRA: M 2 ~ 2M 1 | sin   | > 0.02 | d e, d n | > 10 -28 e-cm M   < 1 TeV

30 Baryogenesis: EDMs & Colliders baryogenesis Present d e LEP II excl LHC reach Prospective d n Cirigliano, Profumo, R-M

31 Dark Matter: Future Experiments Cirigliano, Profumo, R-M Assumes    CDM

32 EDMs in SUSY: Full Two-Loop Higgs Boson Masses Li, Profumo, R-M: 0608.2693 WH Loops dominate for neutron & comparable to  H,  A for electron m A =300 GeV,  =300 GeV, M 2 =2M 1 =290 GeV

33 EDMs in SUSY: Full Two-Loop Higgs Boson Masses Stronger limits on  CPV for light Higgses & large tan 

34 Baryogenesis: EDMs & Colliders Higgs Boson Masses Stronger limits on  CPV for light Higgses & large tan  Examples w/ tan  =20, m stop = 150 GeV: m A =1 TeV, sin   =0.2; m A =1 TeV, sin   =0.05 RH sbottom and stau masses correlated

35 Baryogenesis: EDMs & Colliders Higgsino & Gaugino Mases Larger m A : EDM contours & EWB regions contract

36 Baryogenesis: EDMs & Colliders Arg(  M 1 b * ) = Arg(  M 2 b * ) / Weak dependence of d e, d n on Arg(  M 1 b * ) Res   EWB not compatible with d n Res & non-res   EWB compatible with future d n, light m A, & moderate tan 

37 Baryogenesis: New Electroweak Physics Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition Is it viable? Can experiment constrain it? How reliably can we compute it? 90’s: Cohen, Kaplan, Nelson Joyce, Prokopec, Turok Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD More Higgs? Ando,Barger, Langacker, McCaskey,O.Connell, Profumo, R-M, Shaugnessy, Tulin, Wise

38 Electroweak Phase Transition & Higgs 1st order2nd order LEP EWWG Increasing m h m h >114.4 GeV or ~ 90 GeV (SUSY) Computed E SM : m H < 40 GeV Need So that  sphaleron is not too fast E MSSM ~ 10 E SM : m H < 120 GeV Stop loops in V Eff Light RH stop w/ special

39 Electroweak Phase Transition & Higgs Increasing m H 1st order2nd order LEP EWWG m h >114.4 GeV or ~ 90 GeV (SUSY) Computed E SM : m H < 40 GeV Need So that  sphaleron is not too fast Non-doublet Higgs (w / wo SUSY) MixingDecay sin 2  Can an augmented Higgs sector Generate a strong 1 st order EWPT ? Allow for a heavier SM-like Higgs than in the MSSM ? Alleviate the tension between direct Higgs search bounds and the EWPO ? Be discovered at the LHC ? Can its necessary characteristic probed at the LHC and a future e + e - collider ?

40 Electroweak Phase Transition & Higgs Increasing m H 1st order2nd order LEP EWWG m h >114.4 GeV or ~ 90 GeV (SUSY) Computed E SM : m H < 40 GeV Need So that  sphaleron is not too fast Non-doublet Higgs (w / wo SUSY) MixingDecay B.R. reduction Reduced SM Higgs branching ratios Unusual final states mHmH O’Connell, R-M, Wise

41 The Simplest Extension Model Independent Parameters: v 0, x 0, 0, a 1, a 2, b 3, b 4 H-S MixingH 1 -> H 2 H 2 Simplest extension of the SM scalar sector: add one real scalar S Goal: identify generic features of models with extended scalar sectors that give a strong, 1 st order EWPT Determine low-energy phenomenology (Higgs studies, precision ewk) Address CPV with a different mechanism

42 The Simplest Extension, Cont’d Mass matrix Stable S (dark matter?) Tree-level Z 2 symmetry: a 1 =b 3 =0 to prevent s-h mixing and one-loop s hh x 0 =0 to prevent h-s mixing

43 Finite Temperature Potential What is the pattern of symmetry breaking ? What are conditions on the couplings in V(H,S) so that /T > 1 at T C ? Cylindrical Co-ordinates Compute V eff (  T ) Minimize w.r.t  Find T C Evaluate v(T C )/T C ~ cos  (T C )  (T C )/T C

44 Finite Temperature Potential Potential Conditions Analytic Numerical

45 Electroweak Symmetry Breaking Strong first order EWPT Potential parameters Small  c limit Increase  Large e < 0 Reduce Nonzero V 0

46 Electroweak Symmetry Breaking Strong first order EWPT a 1 <0, a 2 either sign a 1 =b 3 = 0, a 2 < 0 x 0 > 0 occurs readily Light: all models Black: LEP allowed

47 Phenomenology Colliders EWPO: favors light SM-like scalar EWPO compatible m 2 > 2 m 1 m 1 > 2 m 2 LHC exotic final states: 4b-jets,  + 2 b-jets… LHC: reduced BR(h SM) ILC: H’strahlung

48 Phenomenology Colliders Z 2 Symmetry m 1 > 2 m 2 LHC: reduced BR(h SM) Small  :

49 Complex Singlet: EWB & DM? Barger, Langacker, McCaskey, R-M Shaugnessy Key features for EWPT & DM: (1)Softly broken global U(1) (2)Closes under renormalization (3)SSB leading to two fields: S that mixes w/ h and A is stable (DM) In progress… Controls  CDM & EWPT No domain walls DM mass

50 Complex Singlet: EWB & DM? Barger, Langacker, McCaskey, R-M Shaugnessy  2 controls  CDM & EWPT In progress…

51 Summary EW baryogenesis remains a viable and testable mechanism for producing the observed baryon asymmetry Extensions of the Higgs sector of the SM can readily yield a strong 1 st order EWPT, and these extensions can be probed at LHC and ILC We’ve made progress in computing Y B systematically, but challenges remain: no one’s (yet) perfect ! EDM searches provide our most powerful probe of new EW CPV needed for Y B

52 Back Matter

53 Baryogenesis Scenarios Beyond the SMSM symmetry (broken) Electroweak symmetry breaking: Higgs ? Cosmic Energy Budget ? Baryogenesis: When? CPV? SUSY? Neutrinos? Leptogenesis: discover the ingredients: LN- & CP- violation in neutrinos Baryogenesis: Sakharov Baryon number violation C & CP Violation Departure from equilibrium Weak scale baryogenesis: test experimentally: EDMs & Higgs boson studies

54 Baryogenesis: EDMs & Transport Higgs Boson Masses Stronger limits on  CPV for light Higgses & large tan 

55 Dark Matter: Neutrinos in the Sun SUGRA: M 2 ~ 2M 1 AMSB: M 1 ~ 3M 2 Neutralino-driven baryogenesis

56 Dark Matter: Relic Abundance SUGRA: M 2 ~ 2M 1 AMSB: M 1 ~ 3M 2 LEP II Exclusion suppressed too fast Neutralino-driven baryogenesis Non-thermal  

57 Phenomenology: EWPO Electroweak Precision Observables (EWPO) Oblique parameters Similar for S,U… SM: global fit favors light scalar (m h ~ 85 GeV)

58 Phenomenology: EWPO cont’d Electroweak Precision Observables (EWPO) Oblique parameters Global fit (GAPP) Fix m H =114 GeV & fit S,T,U Require O(m 1, m 2, sin  ) - O SM to lie inside 95% CL ellipse

59 Quantum Transport Equations =+ + … + Expand in  d,p,  Currents CP violating sources Links CP violation in Higgs and baryon sectors Chiral Relaxation Strong sphalerons Producing n L = 0 S CPV  M,  H,  Y,  SS Approximations Neglect O (   ) terms Others under scrutiny R-M, Chung, Tulin, Garbrecht, Lee, Cirigliano From S-D Equations: S CPV  M,  H,  Y … Riotto, Carena et al, R-M et al, Konstandin et al R-M et al Objectives: Determine param dep of S CPV and all  s and not just that of S CPV Develop general methods for any model with new CPV Quantify theor uncertainties  Y >> other rates? (No) Majorana fermions ? (densities decouple) Particle-sparticle eq? Density indep thermal widths?

60 SUSY Baryogenesis & Colliders Prospective d e Present d e Prospective d e LHC reach Present d e Prospective d e LHC reach ILC reach

61 LHC Phenomenology Discovery Potential Barger, Langacker, McCaskey, R-M, Shaughnessy CMS 30 fb -1 LHC Higgs Searches CMS & ATLAS: gg H, H  H ZZ llll  H WW l  l CMS : WW H, H  H  l + j H WW l  jj ATLAS : gg H, H ZZ ll  Higgstrahlung

62 LHC Phenomenology Discovery Potential  SM-like Singlet-like ~ EWB Viable Barger, Langacker, McCaskey, R-M, Shaughnessy SM-like SM-like w/ H 2 ->H 1 H 1 or Singlet-like CMS 30 fb -1 Could discovery heavy H 2

63 LHC Phenomenology, cont’d Determining  Barger, Langacker, McKaskey, R- M, Shaughnessy SM-like SM-like w/ H 2 !H 1 H 1 or Singlet-like ~ EWB Viable Enhanced g HVV coupling needed for 5  observation

64 ILC Phenomenology Colliders: e + e - Z * h (also WWF, ZZF) sin 2 

65 Scalar Sector & the EWPT Simple extensions of the SM scalar sector (xSM) w/ small number of d.o.f. can readily lead to a strong, 1st order EWPT as needed for EW baryogenesis EWPT viable xSM can allow for heavier SM- like Higgs consistent with EWPO EWPT xSM can readily probed at the LHC and ILC using Higgs boson searches One can obtain an analytic criteria for parameters of xSM needed for 1st order EWPT that provides guidance for specific model realizations No need for light RH stop

66 Symmetry Breaking Two Cases for at high T: V min = 0 V min = V 0 < 0

67 Electroweak Symmetry Breaking Critical Temperature LEP allowed models: T C ~ 100 GeV |V 0 | / T C 4 << 1

68 Extending the Higgs Sector GUTs: SU(5) example + L soft SUSY Beyond the MSSM       Fileviez Perez, Patel, R-M Ando, Barger, Langacker, Profumo, R-M, Shaugnessy, Tulin

69 SUSY Baryogenesis & Colliders Prospective d e Present d e Prospective d e LHC reach Present d e Prospective d e LHC reach ILC reach

70 EDM constraints & SUSY CPV One-loop d e & slepton mass Heavier sleptons: weaker one-loop EDM constraints & less resonant baryogenesis BBN

71 EDM constraints & SUSY CPV One-loop vs. Two-loop EDMs d e 1 loop ~ d e 2 loop

72 EDM constraints & SUSY CPV AMSB: M 1 ~ 3M 2 Neutralino-driven baryogenesis BaryogenesisLEP II ExclusionTwo loop d e Cirigliano, Profumo, R-M SUGRA: M 2 ~ 2M 1

73 Extending the Higgs Sector: GUTs Implications Strong 1st order EWPT w/o SUSY ? New sources of CPV? Light triplet Higgs Light leptoquarks (unification) Perez, Patel, R-M SU(5) w/ extended Higgs sector      

74 One-loop & Finite T Contributions Cylindrical Co-ordinates Coleman-Weinberg One-loop finite T Ring sum & plasma screening No screening for transverse W, Z masses: (M W,Z ) T ~  cos 

75 What is the origin of baryonic matter ? Cosmic Energy Budget Baryons Dark Matter Dark Energy gg fusion at LHC Higgsstrahlung at a linear collider T-odd, CP-odd by CPT theorem Explaining non-zero  B requires CP-violation and a scalar sector beyond those of the Standard Model (assuming inflation set  B =0) What are the implications of Higgs searches at LHC and Higgs studies at ILC for explaining the baryon asymmetry ? What are the quantitative implications of new EDM experiments for explaining the origin of the baryonic component of the Universe ?

76 Can an augmented Higgs sector Generate a strong 1 st order EWPT ? Allow for a heavier SM-like Higgs than in the MSSM ? Alleviate the tension between direct Higgs search bounds and the EWPO ? Be discovered at the LHC ? Can its necessary characteristic probed at the LHC and a future e + e - collider ? Can an augmented Higgs sector Generate a strong 1 st order EWPT ? Allow for a heavier SM-like Higgs than in the MSSM ? Alleviate the tension between direct Higgs search bounds and the EWPO ? Be discovered at the LHC ? Can its necessary characteristic probed at the LHC and a future e + e - collider ?

77 Cosmic Energy Budget  Y !1? (No) Majorana fermions ? (densities decouple) Particle-sparticle eq? Density indep thermal widths? From S-D Equations: S CPV  M,  H,  Y Numerical work:  SS Riotto, Carena et al, Lee et al, Konstandin et al Lee et al gg fusion at LHC Fix m H & fit S,T,U Require O(m 1, m 2, sin  ) - O SM to lie inside 95% CL ellipse


Download ppt "Baryogenesis, EDMs, and The Higgs Boson M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear,"

Similar presentations


Ads by Google