Download presentation
Presentation is loading. Please wait.
Published byShavonne Eaton Modified over 9 years ago
1
ISSI Meeting, Bern 19-23 January 2014 New 3D photochemical global model with ions in D-region: The instrument for solar-atmospheric relations study Alexei Krivolutsky Lidiya Cherepanova, Tatyana Vyushkova, and Alexander Repnev Laboratory for Atmospheric Chemistry and Dynamics Central Aerological Observatory, Dolgoprudny, Moscow Region Russia
2
Outline 1. Model description 2. Results of simulations: - neutral compounds; - electrons; - other ions. 3. Effects of solar cycle 4. Conclusions
3
MODEL CHARM – I (CHemical Atmospheric Research Model with Ions) (Krivolutsky et al., 2015) Heights: 0-90 km P, L – photochemical sources and losses U, V, W – wind components, µ – mixing ratio number of species: neutrals – 41; ions – 23 number of chemical reactions (total): 194 Photodissociation and ionization rates (total) : 48 Methods: “chemical families” for neutrals (Turco, Whitten, 1974) “electroneutrality” for ions Prather’s scheme for advection ( Prather, 1986) Resolution: 2 km Х 5 Х 5 deg., Time step: 100 s
4
List of neutral species “Families” Ox = O 3 + O( 3 P) + O( 1 D); NOy =N + NO + NO 2 + NO 3 + 2N 2 O 5 + HNO 3 + HO 2 NO 2 + ClNO 3 +N( 2 D); Cly=Cl + ClO + OClO + ClOO + HOCl + HCl; HOx=H + OH + HO 2 + 2H 2 O 2 ; others CH 3, CH 2 O, CH 3 O 2, CH 3 O 2 H, CH 3 O, CHO, CO. О 2 ( 1 g ) Source-gases CH 4, CO 2, N 2 O, СF 2 Cl 2, CFCl 3, H 2, Cl 4, Cl 2, СН 3 Cl, CH 2 Cl, О 2, N 2 (fixed profiles), H 2 O(fixed global field/HALOE).
5
PHOTODISSOCIATION RATES (CHARM-I) O2+h O+O( 1 D) N2O5+h NO2+NO3 H2O+h H+OH O2+h O+O HNO3+h OH+NO2 CF2Cl2+h products O3+h O+O2 CLONO2+h Cl+NO3 CFCl3+h products O3+h O( 1 D)+O2 HCl+h H+Cl CH4+h CH3+H H2O2+h OH+OH ClO+h Cl+O CH4+h CH2+H2 NO2+h NO+O(1 D) NO3+h NO+O2 CCl4+h products HNO3+h H+NO3 H2O2+h OH+OH CH3Cl+h CH3+Cl HOCl+h Cl+HO CO2+h CO+O N2O+h N2+O(1D) N2O5+h 2NO2+O HO2NO2+h HO2+NO2 Cl2+h Cl+Cl NO+h N+O NO2+h NO+O NO3+h NO2+O
6
List of ionized compounds Positive: O 2 + O 4 + O 2 + (H 2 O) H + (H 2 O) H + (H 2 O) 3 H + (H 2 O) 4 H + (H 2 O) 2 NO + N 2 NO + CO 2 NO + (H 2 O) NO + (H 2 O) 2 NO + (H 2 O) 3 NO + Negative: [e] O 2 - O 3 - O 4 - CO 4 - O - OH - CO 3 - O 2 - (H 2 O) HCO 3 -
7
Ionization 1-10 nm ( X-Rays) 102,7-111,8 nm О 2 ( 1 g ) q(z)=n(O 2 ( 1 g )) 0,549 10 -9 exp(-2,406 10 -20 N(O 2 )+2,614 10 -9 exp(-8,508 10 -20 N(O 2 )) 121,6 nm ( L α ) NO GCRs (Heaps, 1978)
8
ARM -Atmospheric Research Model (GCM) (Krivolutsky et al., 2012) Altitudes: 0-135 км Resolutions: vertical– 1 km; longitudinal – 10 0 ; latitudinal– 5 0 time step – 5 min. Paramaterizations: Heating - О2, О3, Н2О (Strobel, 1978; Chou et al., 2002); IR cooling- СО2, О3, H2O, NО ( Chou et al., 2002; Fomichev, 2003; Kockarts, 1980), IGWs (Lindzen, 1981) Planetary waves at lower boundary (S=1,2.3)
9
Global temperature field for July (К) (Krivolutsky et al, 2012)
10
Zonal wind structure (m/s) for July (Krivolutsky et. al, 2012) Height (km) latitude
11
Amplitude of D tidal component in zonal wind (m/s) July ( Krivolutsky et al., 2012) Height (km) latitude
12
Amplitude of SD tidal component in zonal wind (m/s) July (Krivolutsky et al., 2012) Height (km) latitude
13
Neutral compounds: O 3 ( ppmv) January
14
Neutral compounds: NOy ( ppbv) January (CHARM-I)
15
Neutral compounds: HNO 3 ( ppbv) January (CHARM-I)
16
Neutral compounds: N 2 O ( ppbv) January
17
Calculated ionization rate by L α
18
Electron density, 80 km (number/cm**3) 1 st January (00:00 UT) Latitude Longitude 050100150200250300350 -50 0 50
19
IONS: electron density, 60 km (number/cm**3) 1 st January (00:00 UT)
20
NO + (number/cm**3) at 80 km 1 st January (00:00 UT)
21
NO + (number/cm**3) at 70 km 1 st January (00:00 UT)
22
O2 + (number/cm**3) at 80 km 1 st January (00:00 UT)
23
O2 + (number/cm**3) at 70 km 1 st January (00:00 UT)
24
O - 2 (number/cm**3) at 80 km 1 st January (00:00 UT)
25
O - 2 (number/cm**3) at 60 km 1 st January (00:00 UT)
26
1 st January (noon)
29
electrons (number/m**3) 45 N (noon)
30
POSITIVE IONS: O2 + (number/m**3) 45 N (noon)
31
POSITIVE IONS: H + (H 2 O) 4 (number/m**3) 45 N (noon)
32
POSITIVE IONS: O 2 + H 2 O 45 N (noon)
33
Effects of solar cycle simulated with CHARM-I
34
Solar cycle in UV radiation (Matthew et al., 2012)
35
Solar UV variations (164,5 нм)
36
Solar UV spectrum variations used in model runs
37
Ozone change (%) max-min
38
O x change (%) max-min
39
HO x change (%) max-min
40
NOy change (%) max-min
41
Simulated changes in electron density (%) between max. and min. of solar cycle (January)
42
Simulated changes in NO + (%) between max. and min. of solar cycle (January)
43
Simulated changes in NO + (H 2 O) (%) between max. and min. of solar cycle (January)
44
Simulated changes in O 2 + (%) between max. and min. of solar cycle (January)
45
Concluding remarks 1. It seems that CHARM-I reproduces ion and neutral composition well. 2. UV variations disturb neutrals ( ozone etc) and ion composition due to its interactions. 3. Solar cycle in ionization was included only by L α, L β 4. Effect of particles will be included.
46
Thank you for your attention!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.