Presentation is loading. Please wait.

Presentation is loading. Please wait.

LP Extra Issues and Examples. Special Cases in LP Infeasibility Unbounded Solutions Redundancy Degeneracy More Than One Optimal Solution 2.

Similar presentations


Presentation on theme: "LP Extra Issues and Examples. Special Cases in LP Infeasibility Unbounded Solutions Redundancy Degeneracy More Than One Optimal Solution 2."— Presentation transcript:

1 LP Extra Issues and Examples

2 Special Cases in LP Infeasibility Unbounded Solutions Redundancy Degeneracy More Than One Optimal Solution 2

3 A Problem with No Feasible Solution 3 X2X2 X1X1 8642086420 24682468 Region Satisfying 3rd Constraint Region Satisfying First 2 Constraints

4 A Solution Region That is Unbounded to the Right 4 X2X2 X1X1 15 10 5 0 5 10 15 Feasible Region X 1 > 5 X 2 < 10 X 1 + 2X 2 > 10

5 A Problem with a Redundant Constraint 5 X2X2 X1X1 30 25 20 15 10 5 0 510 15 20 25 30 Feasible Region 2X 1 + X 2 < 30 X 1 < 25 X 1 + X 2 < 20 Redundant Constraint

6 Sensitivity Analysis Changes in the Objective Function Coefficient Changes in Resources (RHS) Changes in Technological (LHS) Coefficients 6

7 Minimization Example X 1 =number of tons of black-and-white picture chemical produced X 2 =number of tons of color picture chemical produced Minimize total cost =2,500X 1 +3,000X 2 Subject to: X 1 ≥ 30tons of black-and-white chemical X 2 ≥ 20tons of color chemical X 1 + X 2 ≥ 60tons total X 1, X 2 ≥ $0nonnegativity requirements

8 Minimization Example Table B.9 60 60 – 50 – 40 40 – 30 – 20 20 – 10 – – ||||||| 0102030405060 X1X1X1X1 X2X2X2X2 Feasible region X 1 = 30 X 2 = 20 X 1 + X 2 = 60 b a

9 Minimization Example Total cost at a=2,500X 1 +3,000X 2 =2,500 (40)+3,000(20) =$160,000 Total cost at b=2,500X 1 +3,000X 2 =2,500 (30)+3,000(30) =$165,000 Lowest total cost is at point a

10 LP Applications Production-Mix Example Department ProductWiringDrillingAssemblyInspectionUnit Profit XJ201.532.5$ 9 XM8971.5141.0$12 TR291.521.5$15 BR7881.032.5$11 CapacityMinimum Department(in hours)ProductProduction Level Wiring1,500XJ201150 Drilling2,350XM897100 Assembly2,600TR29300 Inspection1,200BR788400

11 LP Applications X 1 = number of units of XJ201 produced X 2 = number of units of XM897 produced X 3 = number of units of TR29 produced X 4 = number of units of BR788 produced Maximize profit = 9X 1 + 12X 2 + 15X 3 + 11X 4 subject to.5X 1 +1.5X 2 +1.5X 3 +1X 4 ≤ 1,500 hours of wiring 3X 1 +1X 2 +2X 3 +3X 4 ≤ 2,350 hours of drilling 2X 1 +4X 2 +1X 3 +2X 4 ≤ 2,600 hours of assembly.5X 1 +1X 2 +.5X 3 +.5X 4 ≤ 1,200 hours of inspection X 1 ≥ 150 units of XJ201 X 1 ≥ 150 units of XJ201 X 2 ≥ 100 units of XM897 X 3 ≥ 300 units of TR29 X 4 ≥ 400 units of BR788

12 LP Applications Diet Problem Example A3 oz2 oz 4 oz B2 oz3 oz 1 oz C1 oz0 oz 2 oz D6 oz8 oz 4 oz Feed ProductStock XStock YStock Z

13 LP Applications X 1 = number of pounds of stock X purchased per cow each month X 2 = number of pounds of stock Y purchased per cow each month X 3 = number of pounds of stock Z purchased per cow each month Minimize cost =.02X 1 +.04X 2 +.025X 3 Ingredient A requirement:3X 1 +2X 2 +4X 3 ≥ 64 Ingredient B requirement:2X 1 +3X 2 +1X 3 ≥ 80 Ingredient C requirement:1X 1 +0X 2 +2X 3 ≥ 16 Ingredient D requirement:6X 1 +8X 2 +4X 3 ≥ 128 Stock Z limitation:X 3 ≤ 80 X 1, X 2, X 3 ≥ 0 Cheapest solution is to purchase 40 pounds of grain X at a cost of $0.80 per cow

14 LP Applications Labor Scheduling Example TimeNumber ofTimeNumber of PeriodTellers RequiredPeriodTellers Required 9 AM - 10 AM 101 PM - 2 PM 18 10 AM - 11 AM 122 PM - 3 PM 17 11 AM - Noon143 PM - 4 PM 15 Noon - 1 PM 164 PM - 5 PM 10 F = Full-time tellers P 1 = Part-time tellers starting at 9 AM (leaving at 1 PM ) P 2 = Part-time tellers starting at 10 AM (leaving at 2 PM ) P 3 = Part-time tellers starting at 11 AM (leaving at 3 PM ) P 4 = Part-time tellers starting at noon (leaving at 4 PM ) P 5 = Part-time tellers starting at 1 PM (leaving at 5 PM )

15 LP Applications = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) Minimize total daily manpower cost F+ P 1 ≥ 10 (9 AM - 10 AM needs) F+ P 1 + P 2 ≥ 12 (10 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 ≥ 14 (11 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 + P 4 ≥ 16 (noon - 1 PM needs) F+ P 2 + P 3 + P 4 + P 5 ≥ 18 (1 PM - 2 PM needs) F+ P 3 + P 4 + P 5 ≥ 17 (2 PM - 3 PM needs) F+ P 4 + P 5 ≥ 15 (3 PM - 7 PM needs) F+ P 5 ≥ 10 (4 PM - 5 PM needs) F≤ 12 4(P 1 + P 2 + P 3 + P 4 + P 5 ) ≤.50(10 + 12 + 14 + 16 + 18 + 17 + 15 + 10)

16 LP Applications = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) Minimize total daily manpower cost F+ P 1 ≥ 10 (9 AM - 10 AM needs) F+ P 1 + P 2 ≥ 12 (10 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 ≥ 14 (11 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 + P 4 ≥ 16 (noon - 1 PM needs) F+ P 2 + P 3 + P 4 + P 5 ≥ 18 (1 PM - 2 PM needs) F+ P 3 + P 4 + P 5 ≥ 17 (2 PM - 3 PM needs) F+ P 4 + P 5 ≥ 15 (3 PM - 7 PM needs) F+ P 5 ≥ 10 (4 PM - 5 PM needs) F≤ 12 4(P 1 + P 2 + P 3 + P 4 + P 5 )≤.50(112) F, P 1, P 2, P 3, P 4, P 5 ≥ 0

17 LP Applications = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) Minimize total daily manpower cost F+ P 1 ≥ 10 (9 AM - 10 AM needs) F+ P 1 + P 2 ≥ 12 (10 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 ≥ 14 (11 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 + P 4 ≥ 16 (noon - 1 PM needs) F+ P 2 + P 3 + P 4 + P 5 ≥ 18 (1 PM - 2 PM needs) F+ P 3 + P 4 + P 5 ≥ 17 (2 PM - 3 PM needs) F+ P 4 + P 5 ≥ 15 (3 PM - 7 PM needs) F+ P 5 ≥ 10 (4 PM - 5 PM needs) F≤ 12 4(P 1 + P 2 + P 3 + P 4 + P 5 )≤.50(112) F, P 1, P 2, P 3, P 4, P 5 ≥ 0 There are two alternate optimal solutions to this problem but both will cost $1,086 per day F= 10F= 10 P 1 = 0P 1 = 6 P 2 = 7P 2 = 1 P 3 = 2P 3 = 2 P 4 = 2P 4 = 2 P 5 = 3P 5 = 3 FirstSecondSolution


Download ppt "LP Extra Issues and Examples. Special Cases in LP Infeasibility Unbounded Solutions Redundancy Degeneracy More Than One Optimal Solution 2."

Similar presentations


Ads by Google