Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wesley Berg, Tristan L’Ecuyer, and Sue van den Heever Department of Atmospheric Science Colorado State University Evaluating the impact of aerosols on.

Similar presentations


Presentation on theme: "Wesley Berg, Tristan L’Ecuyer, and Sue van den Heever Department of Atmospheric Science Colorado State University Evaluating the impact of aerosols on."— Presentation transcript:

1 Wesley Berg, Tristan L’Ecuyer, and Sue van den Heever Department of Atmospheric Science Colorado State University Evaluating the impact of aerosols on the onset and microphysical properties of rainfall off the coast of China

2 Differences in TRMM Rainfall Detection February 1, 2000

3 Impact of Aerosols on Rainfall Detection? TMI-PR Rain Detection Differences SPRINTARS Sulfate AOD

4 Calipso 532 nm Attenuated Backscatter Aerosol Layer (~3-5 km) Coincident TRMM/CloudSat Case 3 April 2007

5

6 Rain Rate Histograms 3 April 2007

7 Differences in Radar Sensitivity TRMM PR (13.8 GHz) vs. CloudSat (94 GHz) Simulated Near-Surface Z Cloud Reflectivity (dBZ) DrizzleCloud LWC (gm -3 ) Rainrate (mm h -1 ) MDS = 18 dBZ MDS = -28 dBZ PR CPR 1 6 10 15 0.1 1 10 100

8 Coincident TRMM/CloudSat Case 3 April 2007

9 Cloud Resolving Model Simulations CSU RAMS 3-D Cloud Structure Transect of Cloud Liquid Water

10 Cloud Resolving Model Simulations Effect of Variations in Sulfate Aerosol Optical Depth Cloud Water Path Rain Water Path Total Water Path

11 Cloud Resolving Model Simulations Effect of Variations in Sulfate Aerosol Optical Depth Accumulated Precipitation Ratio of Cloud Water Path to Total Water Path

12 Probability of Precipitation versus Liquid Water Path

13

14 Summary Differences in rain fraction between PR and TMI off the coast of China point to a modification of cloud microphysical properties by aerosols. –Magnitude is substantial (i.e. the frequency of occurrence leads to large differences in the total rain (up to ~50% or 2 mm/day) locally. Results from 3 April 2007 Case and “Idealized” CRM Simulations –Consistency in rain area between TMI and CloudSat indicate the presence of large-scale light rain and/or drizzle below the PR detection threshold (~17 dBZ) –High AOD CRM simulation has substantially more cloud water and the onset of rain is delayed. –This is consistent with the observations as higher cloud water paths may lead to an overestimate of the rain rate by TMI/CloudSat and possible underestimate by the PR as a result of smaller drops initially. In addition, the delay in the development of rain drops may be a factor leading to the underestimate of the rain area by PR. Results from Statistical Analysis (Global ocean analysis from 2007) –Probability of precipitation decreases significantly in high sulfate aerosol environment. –Aerosol effect is evident in both stable and unstable environments. –Results are consistent using either SPRINTARS sulfate AOD or MODIS aerosol index.

15 Primary Objective: To provide, from space, the first global survey of cloud profiles and cloud physical properties, with seasonal and geographical variations needed to evaluate the way clouds are parameterized in global models, thereby contributing to weather predictions, climate and the cloud- climate feedback problem. The CloudSat Mission Nadir pointing, 94 GHz radar 3.3  s pulse  500m vertical res. 1.4 km horizontal res. Sensitivity ~ -28 dBZ Dynamic Range: 80 dB Antenna Diameter: 1.85 m Mass: 250 kg Power: 322 W 500m ~1.4 km The Cloud Profiling Radar

16 TRMM Sensors Precipitation radar (PR): 13.8 GHz 4.3 km footprint 0.25 km vertical res. 215 km swath Microwave radiometer (TMI): 10.7, 19.3, 21.3, 37.0 85.5 GHz (dual polarized except for 21.3 V-only) 10x7 km FOV at 37 GHz 760 km swath Visible/infrared radiometer (VIRS): 0.63, 1.61, 3.75, 10.8, and 12 : at 2.2 km resolution Lightning Imaging Sensor (LIS ) Cloud & Earth Radiant Energy System (CERES) Nov. 1997 launch, 35° inclination; 402 km Tropical Rainfall Measuring Mission (TRMM)


Download ppt "Wesley Berg, Tristan L’Ecuyer, and Sue van den Heever Department of Atmospheric Science Colorado State University Evaluating the impact of aerosols on."

Similar presentations


Ads by Google