Presentation is loading. Please wait.

Presentation is loading. Please wait.

PLC front-end Design Review Curtis Mayberry 7-5-11.

Similar presentations


Presentation on theme: "PLC front-end Design Review Curtis Mayberry 7-5-11."— Presentation transcript:

1 PLC front-end Design Review Curtis Mayberry 7-5-11

2 Revised Project Description

3 Block Diagram RTD TC Thermistor +/-10v, +/-5v 4-20mA Signal Conditioning Microcontroller ADC Cost-Effective High-Accuracy Super-Mini Dig Labview Stage 1 Stage 2

4 The Plan May 16: First Day May 21: Project Definition & training (1 week) June 5 - June 10: FAE conference in Tucson (1 week) July 5: Block Diagrams, calculations (accuracy), simulations, Part selection & ordering, initial schematic (4 weeks) July 14: PCB layout (2 weeks) July 21: Basic LabView Coding & Testing preparation (1 week) July 29: Initial lab results -Oven(~1 weeks) August 3: Accuracy tests (Tucson?) August 5: Final Report (2 days) August 10: Preliminary Presentation (2 days) August 12: Final Presentation (2 days) August 18: Last Day (1 week)

5 Universal Inputs 0-10v and +/- 10v, 0-5v and +/- 5v, 4-20mA

6 Universal Voltage Input 0-5v, 0-10v, +/- 5v and +/- 10v universal voltage input Change resistance values to change input voltage levels Second order RC filter with poles at 39 Hz and 3900Hz Opamp to scale down input 2.5v reference generated to scale input Opa2333: Low offset voltage and drift, rail-to-rail input, dual opamp part

7

8

9 Noise Calculations: Voltage Reference 2.5v Reference –REF5025: 625nV RMS –OPA333: 869 nV RMS –Filter KTC noise: 202.8nV RMS –Reference Output 10kΩ: 202.8 nV RMS –Total Noise: 1.108µV RMS – Current Noise: 26.34nV RMS (negligible)

10 Noise Calculations Input Filter –82nF filter KTC noise: 224 nV RMS –820pF filter noise: 211.47 nV RMS –Total Noise: 308.5 nV RMS Amplifier Noise: –Feedback Network (16.67kΩ): 828nV RMS –OPA333 noise: 869.5nV RMS –Total Noise: 1.2µV RMS

11 Noise Calculations: Total ADC V+ input noise total: 1.503µV RMS ADC V- input noise total:1.089uV RMS

12 Noise Calculations: Bringing it all together ADC noise: 1.35 µV RMS –Noise at Apga =1 and 5 SPS

13 Resistor Mismatch Errors (Worse Case) Resistor Options (worse case) –Set 1: 668.7 µV (0.1% resistors) –Set 2: 3.337 mV (0.1% resistors) –Set 2: 1.668 mV (0.05% resistors) –Set 2:666.8 µV (0.02% resistors) –Total: 1.797mV Set 1 Set 2

14 Resistor Tolerance Monte Carlo Simulation Ran Monte Carlo Simulation using 0.1% resistors 2.5 mV max error on output Used an ideal op-amp to isolate the error source Small variation between resistor tolerances

15 Error Estimation ADC –15µV offset –INL: 6 ppm –Gain Error: 0.02% –External Reference: 0.05%*2.024V = 1.024 mV –Total: 1.230 mV Level shifting OPA2333 –Offset: 10 µV –Offset drift: 0.05 µV/ o c –CMRR >106 dB –PSRR: 5 µV/V (max) 2.5v Reference OPA2333 –Offset: 10 µV –Offset drift: 0.05 µV/ o c(3µV over 25 o C ± 60 o C temperature range) –CMRR >106 dB –PSRR: 5 µV/V (max)

16 Error Estimation Resistor Mismatch: 1.797 mV REF5025 2.5v reference: 1.25 mV offset is cancelled out Total: with no “interference”: 2.178 mV

17 Simulation: +/- 10v

18 Simulation: +/- 5v

19

20 Universal Current input 4-20mA Second order RC filter Internal 2.048v reference 221Ω shunt converts 4-20mA to 884mV-4.420V OPA2333: Rail-to-Rail common mode input, low offset voltage and drift

21

22 Simulation

23 2.5v reference

24 Differential output

25 Noise Analysis OPA333 buffer noise: 869.5 nVRMS Resistor Noise –10kΩ: 202.8 nV –16kΩ: 123 nV –1.6kΩ: 31.1 nV V+ Total Noise: 901.8 nV RMS V- Total Noise: 1.089 µV RMS (Same as V input V-) ADC noise: 1.35 µV RMS –Noise at Apga =1 and 5 SPS Total noise: 11.729 µV PP

26 Error Estimation ADC –15µV offset –INL: 6 ppm – gain error: 0.02% –Noise error: 7.78 µVpp –External Reference: 1.024 mV Shunt resistor tolerance: 20mA*221*.1% =4.42 mV Level shifting OPA333 –Offset: 10 µV –Offset drift: 0.05 µV/ o c –CMRR >106 dB –PSRR: 5 µV/V (min) 2.5v Reference OPA333 –Offset: 10 µV –Offset drift: 0.05 µV/ o c(3µV over 25 o C ± 60 o C temperature range) –CMRR >130 dB –PSRR: 2 µV/V REF5025: 1.25mV Total

27

28 Temperature Sensors Thermistor RTD Thermocouple Targeted industrial temperature range: -40 o c to 85 o c

29 Thermistor Temperature proportional to resistance Calibrated: 25 o C and 85 o C NTC thermistor –30kΩ ±1% @ 25 o C 2 Designs: –Single-ended –Bridged

30

31 Simulation

32 Error Estimation Resistor Mismatch: 374.81µV Current Accuracy:0v –Ratio metric measurement Thermistor Errors: 5.027 mV –Thermistor 25 o C R-tolerance: 3.731mV (R±1%) –Beta Error: 3.37 mV (Beta±1%) ADC Errors: –15µV offset –INL: 6 ppm – gain error: 0.02% –External reference R: 2mV Minimum 4.4 mV/ o C Total Error: 5.425mV (~1.23 o C)

33

34

35 Simulation

36 Error Estimation Resistor Mismatch: 1.677mV (0.1% resistors) Current Accuracy: 0v –Ratio metric reading (external ref) –Mismatch between current sources: ±0.15% of FS (50 µV) = 75nV (negligible) Thermistor Errors: 5.027 mV –Thermistor 25 o C R-tolerance: 3.731mV (R±1%) –Beta Error: 3.37 mV (Beta±1%) ADC Errors: 400.5µV –15µV offset –INL: 6 ppm – gain error: 0.02% Minimum 4.4 mV/oC Total Error: 5.311mV

37

38 RTD PT100, PT 1000 Resistance proportional to temperature Callendar-Van Dusen equation

39

40 Simulation

41 Error Estimation Class A RTD probe: ±0.15 o C @ 0 o C ADC Errors: 400.5µV –15µV offset –INL: 6 ppm – gain error: 0.02% –External reference tolerance: Total Error: 2.040 mV

42

43 Thermocouple Seebeck effect Need to measure voltage across the element Cold junction compensation: RTD close to the cold junction PCB layout designed to keep the cold junction isothermal with the RTD Types: K, J, T, E, N, R, S, B Different materials, temperature ranges, TC Example: K type: ~55µV/ o C

44

45 Error Estimation RTD Error: 2.040 mV Thermocouple element error: Varies by type Max element error (using K type): 1.1 o C or 0.4%

46

47 Digital Interface SM-USB-DIG

48

49 Stage 2 Interface Add MCU Excluded from stage 1 (Rev. A) MCU controls data converters MCU communicates through SM-USB- DIG to computer Adds extra capabilities

50 Power Powered by a lab supply for prototyping Banana plug input jack

51 Floor plan Front-Ends Control and Power

52 The Plan May 16: First Day May 21: Project Definition & training (1 week) June 5 - June 10: FAE conference in Tucson (1 week) July 5: Block Diagrams, calculations (accuracy), simulations, Part selection & ordering, initial schematic (4 weeks) July 14: PCB layout (2 weeks) July 21: Basic LabView Coding & Testing preparation (1 week) July 29: Initial lab results -Oven(~1 weeks) August 3: Accuracy tests (Tucson?) August 5: Final Report (2 days) August 10: Preliminary Presentation (2 days) August 12: Final Presentation (2 days) August 18: Last Day (1 week)


Download ppt "PLC front-end Design Review Curtis Mayberry 7-5-11."

Similar presentations


Ads by Google