Download presentation
Presentation is loading. Please wait.
Published byRalf Parker Modified over 9 years ago
1
Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas
2
Preshower 15/03/2005 P.Kokkas Outline Pedestal subtraction. Common mode evaluation (“Histograming Method”) Analysis of Electron Data Evaluation of total charge – Most probable energy Most probable energy as function of beam energy. Analysis of Muon Data Charge in one strip Evaluation of total charge in X and Y sensors MC evaluation of energy deposition in X and Y sensors MC over data for muons Evaluation of electron signal in MeV Comparison MC with Data for electrons Conclusions
3
Preshower 15/03/2005 P.Kokkas Pedestal Subtraction Run NumbersRuns Used for this analysis Pedestals_LG_nobeam22, 25, 26 Pedestals_HG_nobeam27, 28, 32 Pedestalsnobeam_LG139 * Pedestalsnobeam_HG140 * Pedestalswith120GeVelectrons_LG131 Pedestalswith120GeVelectrons_HG132 In the next table we see all pedestal runs. For this analysis we used pedestals from runs 139 and 140. Pedestal = (s0 + s1 + s2)/3
4
Preshower 15/03/2005 P.Kokkas Common mode evaluation 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Separate evaluation of common mode for strips 0-15 and 16-31 “Histograming Method or Median Method” Common Mode 0-15 Common Mode 16-31 Correction Strips 0-15 Correction Strips 16-31
5
Preshower 15/03/2005 P.Kokkas Signal after pedestal-common mode subtraction Signal After Pedestal subtraction Signal after Common mode subtraction ADC channels
6
Preshower 15/03/2005 P.Kokkas Signal with – without common mode correction Signal Pedestal correction Signal Pedestal + CM Signal Pedestal correction Signal Pedestal + CM X sensorY Sensor
7
Preshower 15/03/2005 P.Kokkas Analysis of Electron Data Total charge = Sum of charges from all strips. Q=-0.085*s0+0.909*s1+0.176*s2 Total charge 5σ cut = Sum of charges from all strips after cutting 5σ (pedestal σ ) on the charge of every strip. Total Charge Distributions fitted on a Landau distribution with a convoluted Gaussian. p(0) : Width (scale) parameter of Landau density. p(1) : Most Probable parameter of Landau density. p(2) : Total Area (integral – normalization constant). p(3) : Width of convoluted Gaussian function.
8
Preshower 15/03/2005 P.Kokkas Electrons 120 GeV Total Charge Total Charge X Sensor Total Charge Y Sensor Total Charge X 5σ cut Total Charge Y 5σ cut
9
Preshower 15/03/2005 P.Kokkas Electrons Total Charge all Energies Electrons EnergyX Sensor (ADC channels) Y Sensor (ADC channels) 120 GeV328.6±3.8841.3±6.4 80 GeV272.2±4.9718.6±8.4 50 GeV215.3±4.6532.4±6.5 35 GeV174.4±4.6439.4±5.0 20 GeV126.7±4.2310.5±4.8
10
Preshower 15/03/2005 P.Kokkas Total Charge Most Probable Energy (Electrons all Energies)
11
Preshower 15/03/2005 P.Kokkas Analysis of Muon Data Plots: Total charge for one strip only (Sensor X, strip 17) after pedestal and common mode subtraction. Total charge collected for X and Y sensors. MC run for muons at 150 GeV and evaluation of the total energy deposition in X and Y. Comparison of DATA and MC
12
Preshower 15/03/2005 P.Kokkas Muons :Total charge for one strip only (Sensor X, strip 17) Sensor X Strip 17 After pedestal subtraction Sensor X Strip 17 After pedestal subtraction Sensor X Strip 17 After common mode subtraction Sensor X Strip 17 After common mode subtraction ADC channels
13
Preshower 15/03/2005 P.Kokkas Muons: Total charge for Sensor X and Y Detector X Total Charge After Clustering Detector X Total Charge Events with Multiplicity 1 DATA X Sensor DATA Y Sensor
14
Preshower 15/03/2005 P.Kokkas Muons : MC Energy Deposition on X and Y MC X Sensor MC Y Sensor
15
Preshower 15/03/2005 P.Kokkas Muons : MC over DATA Detector X (1 mip) Detector Y (1 mip) MC (MeV) 0.0860.087 DATA (ADC channels) 49.77±0.2944.09±0.28 Minimum Ionizing Particle in MC and in Data
16
Preshower 15/03/2005 P.Kokkas Muons : MC over DATA MC DATA MC
17
Preshower 15/03/2005 P.Kokkas Evaluation of electron signal in MeV Having the 1 mip (in MeV and in ADC channels) from muon data we will try to evaluate electron signal in MeV. First we need to go from HG to LG. PACE 3 (P.Aspel presentation 28 th July 2003): 1 mip in LG => 3.35 mV 1 mip in HG => 22.2 mV In the next transparency we evaluate the Most Probable Energy of the electron signal distributions in MeV. => Ratio HG/LG =6.627 Important!!
18
Preshower 15/03/2005 P.Kokkas Electrons signal in MeV DATA X (ADC channels) DATA Y (ADC channels) DATA X (MeV) DATA Y (MeV) MC X (MeV) MC Y (MeV) Muons 150 GeV (1 mip) 49.77(HG) 7.510(LG) 44.09(HG) 6.653(LG) 0.0860.087 Electrons 120 GeV328.6841.33.76211.002 Electrons 80 GeV272.2718.63.1179.397 Electrons 50 GeV215.3532.42.4656.962 Electrons 35 GeV174.4439.41.9975.746 Electrons 20 GeV126.7310.51.4514.060
19
Preshower 15/03/2005 P.Kokkas MC for Electrons Run MC for electrons and evaluate energy deposition for energies: Electrons 120 GeV Electrons 80 GeV Electrons 50 GeV Electrons 35 GeV Electrons 20 GeV Fit distributions as we did for data. For example next transparency shows fit at 120 GeV.
20
Preshower 15/03/2005 P.Kokkas Electrons MC Energy Deposition on X and Y at 120 GeV E[MeV]
21
Preshower 15/03/2005 P.Kokkas Data over MC DATA X (MeV) DATA Y (MeV) MC X (MeV) MC Y (MeV) Muons 150 GeV0.0860.087 Electrons 120 GeV3.76211.0022.2597.663 Electrons 80 GeV3.1179.3972.1187.194 Electrons 50 GeV2.4656.9622.0496.261 Electrons 35 GeV1.9975.7461.9015.187 Electrons 20 GeV1.4514.0601.6794.216 Preliminary !!!!!
22
Preshower 15/03/2005 P.Kokkas Conclusions Electron Analysis From the plot of MPE versus Beam energy we conclude a good response of sensors as function of the electron energy. For the Common Mode evaluation “Fit Method” and “Median Method” give the same results! Muon Analysis Evaluation of 1 mip is possible More work from our side on MC. Evaluation of electron signal in MeV From muon data analysis the evaluation of electron signal in MeV is possible. The ratio HG/LG is very important! More work from our side on MC.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.