Presentation is loading. Please wait.

Presentation is loading. Please wait.

Elemental, My Dear Watson Paul Middlestead University of Ottawa, G.G. Hatch Laboratory For 20th Continuous Flow Conference, Davis, 2014.

Similar presentations


Presentation on theme: "Elemental, My Dear Watson Paul Middlestead University of Ottawa, G.G. Hatch Laboratory For 20th Continuous Flow Conference, Davis, 2014."— Presentation transcript:

1 Elemental, My Dear Watson Paul Middlestead University of Ottawa, G.G. Hatch Laboratory For 20th Continuous Flow Conference, Davis, 2014

2  This talk is for new users  We will touch the basics on Elemental analysers  A mix bag of tricks and advices  Refer to manufacturer’s instruction manuals  Only endorsed products are: Rickards Red and Rickards White ! Who/what is this talk for?

3 Meet my family Combustion EA NCHS TC/EA Pyrolysis HO Large capacity S onlyTOCStable isotopes 1500 0 C1200 0 C

4  Leco is the most popular manufacturer of elemental analysers. Every department has one or two of those accumulating dust.  Static combustion using oxygen: not suitable for IRMS. Meet Grand Pa

5 Elemental Analyser as an…instrument Schematics Autosamplers Flash combustion Chemicals & Configurations Gas Chromatography Thermal Conductivity Detector Typical run Common problems EA-IRMS Let’s touch on

6  Simultaneous determination of Nitrogen, Carbon, Hydrogen, Sulfur, Oxygen  Measuring range: 100 ppm to 100%  Sample size: 0.1 to 1000 mg / 0.1 to 25 ul  Detection limit: 10 ppm  Accuracy: 0.3% - 0.02% absolute EA as an …. instrument

7  CE instruments (Carlo Erba) models 1108, 1110, NA 1500, NA 2100, Flash 1112, Flash 2000  Costech Model ECS4010  Elementar cube family  Eurovector models EuroEa3028-HT, Ea3024- IRMS, pyrolysis model  Sercon-Integra2  TC\EA Thermo  … Manufacturers, models blablabla

8 EA : Bulk analysis of NCHS/O  Organic compounds  Pharmaceuticals  Organometallics  Petrochemicals  Gasoline & fuels  Graphite  Carbides & nitrides  Metals & alloys  Polymers  Explosives  Hydrocarbons  Soils  Coal & coke  Liquids In short, you can combust your grandmother!

9 Ref gas 1 Elemental Analyser (CNS) (OH) Interface Isotope Ratio Mass Spectrometer He Ref gas 2 2 m Typical EA setup with IRMS

10 EA picture

11 Elemental Analyser Schematic TCD Combustion Chemicals 1020C Reduction Chemicals 650C Gas chromatography Column in oven Thermal Conduc- tivity Detector Autosampler N2 H2O CO2 SO2 He O 2 Water Trap EA line out

12 Found the problem with the previous slide? A beer if you do… (5 seconds)

13 Elemental Analyser Schematic TCD Combustion Chemicals 1020C Reduction Chemicals 700C Gas chromatography Column in oven Thermocouple Detector Autosampler N2 H2O CO2 SO2 He O 2 Water Trap EA line out

14 A cold Rickard’s Red for me please.

15 1. Sample/Std is weighed and wrapped in tin foil, placed in culture tray/autosampler 2. Sample drops is flash-combusted in O 2 in He stream, causing rapid cracking and oxidation of gases stoichiometrically equivalent to their elemental components, some gas oxides need to be reduced before obtaining final products (N 2, CO 2, H 2 O, SO 2 ) i.e. oxidation and reducing reactions involved Typical Analysis Procedure for EA

16 3.Separation of gases by gas chromatography or chemical column traps 4.Detection by thermal conductivity detector (TCD) or IRMS. 5.Curve made from weighing certified stds (for isotope and/or quantitative measurements)

17 Some torture tools…

18 Well well, got culture?

19 Super size meSuper size meSuper size meSuper size me

20 MAIS C’EST IMPOSSIBLE!

21 C’EST FANTASTIQUE! Filters? Careful!

22 Not flat please

23

24 Autosamplers (AS200)

25 Zero Blank

26 Zero Blank modified

27 Special tools required ECS 4010

28 Take 20 minutes to study the gas schematics of your instrument Be good to yourself

29

30 Sample dropping 0 103040 START Sample drops Combustion starts Injected O 2 Flash should occur within 2-3 seconds of being dropped 20 seconds

31 PLATINUM: Absorbs much of the heat of the reactor before passing it on to the sample, slowing down reaction PLATINUM: Absorbs much of the heat of the reactor before passing it on to the sample, slowing down reaction ALUMINIUM: Supplies good oxidation flash and prime sample ignition but does not melt or mix with the sample thus does not promote inner oxidation ALUMINIUM: Supplies good oxidation flash and prime sample ignition but does not melt or mix with the sample thus does not promote inner oxidation SILVER: Melts at 960 0 C, does not take part in the combustion, retains trace of carbon when in molten state SILVER: Melts at 960 0 C, does not take part in the combustion, retains trace of carbon when in molten state TIN: Inexpensive & takes active part in process. Melts at 235 0 C with very low enthalpy, intermixes with organic and inorganic substances, expedites the final oxidation reaction TIN: Inexpensive & takes active part in process. Melts at 235 0 C with very low enthalpy, intermixes with organic and inorganic substances, expedites the final oxidation reaction Why you Tin man?

32 C CO 2 CO 2 C CO 2 CO 2 Let’s get cracking H H 2 OH 2 O S SO 2 + SO 3 SO 2 Combustion tube Reduction tube N N 2 + NxOx N 2

33 Chemicals and Configurations System should be optimized for element(s) to be analyzed One-tube system: both oxidant catalyst and reducing chemicals in one tube; usually used if S is to be analyzed Two-tube system: one tube for oxidant, one tube for reducing chemicals; usually used for N, NC or NCH Chemical traps: Mg Perchlorate or Anhydrone will trap H 2 O, and Carbosorb will trap CO 2 (and SO 2 )

34 Configuration CN

35 Configuration S

36

37 Small is beautiful

38 Using grinding tools and diluted Nitric acid, one can re-use combustion and reduction tubes More torture tools

39  Gas chromatographic columns will separate different components according to their polarity and molecular size.  Factors influencing the quality of the chromatography: column length, size of packing, tube diameter, stationary phase type, flow rate, temperature.  Packed column: packed polymer beads, different sizes available. High capacity, low resolution.  Capillary column: small capillary with polymeric film on inner wall. High resolution, low capacity.  Deactivated fused silica is free of adsorption problems encountered with most packings or capillaries columns. Gas Chromatography

40 Gas Separation/ GC He + N 2, CO 2, H 2 O, SO 2 + He He + SO 2 + H 2 O + CO 2 + N 2 + He INCREASING POLARITY OF GASES

41 What after we separate? He + SO 2 + H 2 O + CO 2 + N 2 + He DETECTOR TIME DETECTOR N2N2 CO 2 SO 2 H20H20

42 Gas Separation / Purge & Trap TCD SO 2 H2OH2O CO 2

43 Thermal conductivity detector (TCD) Heated filament from which heat is removed at a constant rate by He gas stream. Change in heat transfer is caused by presence of analyte molecules with different thermal conductivities than He. Relatively low sensitivity, excellent range and linearity. Non-destructive. Electron capture detector (ECD) Electrons are captured by organic species in ionized carrier; used for trace sulfur determination. Isotope Ratio Mass Spectrometer (IRMS) Detectors

44 Typical output of EA, text book N2 CO2 H2O SO2

45 Balance: Get the best A 0.01mg readability translates in an error of 0.25% on a 2 mg sample (on 100% carbon) A 0.01mg readability translates in an error of 0.25% on a 2 mg sample (on 100% carbon) Balance

46 IAEA (and NIST) standards Links available on Isogeochem

47 Best : %N, 15 N, %C, 13 C Test different materials and pray Make your own: Caffeine L-glutamic acid Mixtures such as sucrose + potassium nitrate Mix in solution of natural + enriched/depleted material then dried, powdered, sieved STD: Making it on your own…

48 STD: Not making it on your own…

49 Can also contact other university labs to buy or obtain their internal standards. STD: Not making it on your own… A RNDT S CHIMMELMANN Indiana University http://mypage.iu.edu/~aschimme/hc.htm

50 Calculation Methods 1. K-Factor ( Single point calibration with blank substraction) Calculated % = K * (Area unk – Area blk) Weight unk Where K = Weight std * Theor std % Area std - Area blk

51 Calculation Methods 2. Linear Fit (Least square linear regression) Calculated % = m * Area unk + b Weight unk Peak Area Wt * Th std %

52 Calculation Methods 3. Quadratic Fit (Least square quadratic regression) Calculated % = a * Area unk 2 + b * Area unk + c Weight unk Peak Area Wt * Th std %

53 An update… Most elemental analysers manufacturers have considerably refined their calculation methods, with more complex algorithms, low-high ranges and statistical tools.

54 Leak check (1) EA Pressure check Cap exit port Increase P of He to 1.3 bar, wait 3 minutes Close regulator Pressure gauge should not move for 5 minutes EA Flow check (requires electronic mass flow controller) Cap exit port Monitor flow for 3 minutes Flow should drop to 0 ml/min

55 Leak check (2) EA Inter- face Leak check with IRMS EA has been leak checked EA chemicals have outgassed (12 hours) Tune to Ar (mass 40) Should meet manufacturer’s requirements Use Ar cylinder to hunt MS Ar

56 Elemental Analyser Schematic for IRMS TCD Combustion tubeReduction tube Water trap Gas chromatography Column Thermocouple Detector Autosampler To MS N2 CO2 Interface Diluter & ref gas

57  Water is removed via Mg Perchlorate/sicapent trap ---water and mass spectrometer do not mix----  Configuration should be optimized for gas of interest  Leak free (mass 28 & 40, use Argon as leak probe)  Low and stable background (mass 28, 18, 40, 44)  Dynamic range must be respected, do use target beam  Best sequence is carefully planned ie known concentration of samples  Garbage in……Garbage out Considerations for EA-IRMS

58 Some useful info Lab No.Sample typeNitrogenCarbonHydrogenSulphurC/NComments 97-256-010Adult mysids10,2050,97na 5,00Whall JD, Trent U. 97-220-003 Amphipods 6,8133,205,660,004,88Pastershank G., U of O/ Biology 97-256-004Chironomids8,9837,23na 4,15Whall JD, Trent U. 97-256-014Clam12,3048,91na 3,98Whall JD, Trent U. 97-220-004 Clam muscle 11,2643,416,771,103,85Pastershank G., U of O/ Biology 97-220-005 Clam shell 0,0511,910,190,00 231,6 3 Pastershank G., U of O/ Biology 97-220-018 Cragon (shrimp) 10,0337,225,910,003,71Pastershank G., U of O/ Biology 97-220-020 Diatom 0,000,740,090,00N.A.Bad trace 97-220-002 Egg white 11,8545,836,931,143,87Pastershank G., U of O/ Biology 97-220-001 Egg yolk 5,4162,699,730,0011,59Pastershank G., U of O/ Biology 97-220-009 Fish bone 6,4319,533,510,003,04Pastershank G., U of O/ Biology 97-220-008 Fish eye 12,9048,707,052,133,77Pastershank G., U of O/ Biology 97-220-013 Fish fin 10,0134,365,350,003,43Pastershank G., U of O/ Biology 97-220-014 Fish gill 13,2847,107,060,003,55Pastershank G., U of O/ Biology 97-220-015 Fish gut content 9,5644,887,071,134,69Pastershank G., U of O/ Biology

59  Best are quartz filters; they are stable. However they are more expensive and offer less choice.  Silver filters are great too.  Mostly glass filters, cheap, huge choice.  How much to use? Filters, we can do that!

60 Area =  *R 2 In this case, a punch is about 16mm 2 and our whole filter is about 1490mm 2. Our punch hole is roughly 1% of the filter.

61 Sediment contamination Inorganic Carbon Average  13 C: 0‰ = Total CarbonOrganic Carbon Average  13 C: -25‰ 0%+ 100%=-25 ‰ 1%+ 99%=-24.75 ‰ 5%+ 95%= -23.75 ‰ 10%+ 90%= -22.50 ‰ 50%+ 50%= -12.5 ‰

62 Detection Limit? Hmmmm… Every manufacturer has them, frankly they are all similar. In the end, you want an instrument that is linear with a decent sensitivity and a nice sample peak. Your source should be adjusted accordingly and you may have to sacrifice sensitivity in order to obtain stability and linearity. Hence, the detection limit may change according to the source parameters, the EA configuration and the condition of the chemicals. Be conservative.

63 Optimal amount for me % NitrogenWt required 1000.1mg 101.0mg 55mg 27mg 110mg 0.1100mg 0.001Yeah, right! Optimal amount of Nitrogen: 0.1mg

64 Open split, magical stuff He + CO 2 + N 2 + He EA 100 ml/min Fused silica capillary 100 um, 2m, inserted about 30cm in EA line, 0.4 ml/min going into source of IRMS 2mm or 1/16” SS line from EA

65 In real life…Open split EA IRMS Ref 1 Ref 2 He Ref 3

66 The joy of sniffing EA only Mass spectrometer output TCD output from EA MagnetPeakjump N2N2 CO 2 Mass 28, 29 Mass 44,45,46

67 The joy of sniffing, total Mass spectrometer output TCD output from EA MagnetPeakjump N2N2 CO 2 Mass 28, 29 Mass 44,45,46 Masses 28 & 29Masses 44, 45 & 46

68 To dilute or Not to dilute?

69 A useful suggestion… I strongly recommend that you create a basic document for your users explaining the limits and pitfalls of EA-IRMS analysis, this will save you (and your users) an enormous amount of time.

70

71

72

73

74

75 Removing inorganic carbon is not trivial. Alkalies (Sodium, Potassium, Calcium) are difficult to combust, catalist is definitively required to bind and help with oxydation. Oxygen contribution to  34 S is still a problem, especially with organic samples. Some unresolved issues with EA

76 Last suggestion and only Official Endorsement The only product fully and officially endorsed by the author is: Rickard’s White

77 Thank you My thanks to: Wendy Abdi, Nik Binder, Fred Longstaffe, Scott Hughes, Gilles St-Jean, Peter Stow and Patricia Wickham for the use of material, brain power and time …


Download ppt "Elemental, My Dear Watson Paul Middlestead University of Ottawa, G.G. Hatch Laboratory For 20th Continuous Flow Conference, Davis, 2014."

Similar presentations


Ads by Google