Download presentation
Presentation is loading. Please wait.
Published byCharlene White Modified over 9 years ago
1
Computer aided geometric design with Powell-Sabin splines Speaker : 周 联 2008.10.29 Ph.D Student Seminar
2
What is it? C 1 -continuous quadratic splines defined on an arbitrary triangulation in Bernstein-Bézier representation
3
Why use it? PS-Splines vs. NURBS suited to represent strongly irregular objects PS-Splines vs. Bézier triangles smoothness
4
Main works M.J.D. Powell, M.A. Sabin. Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw., 3:316–325, 1977. P. Dierckx, S.V. Leemput, and T. Vermeire. Algorithms for surface fitting using Powell-Sabin splines, IMA Journal of Numerical Analysis, 12, 271-299, 1992. K. Willemans, P. Dierckx. Surface fitting using convex Powell-Sabin splines, JCAM, 56, 263-282,1994. P. Dierckx. On calculating normalized Powell-Sabin B-splines. CAGD, 15(1):61–78, 1997. J. Windmolders and P. Dierckx. From PS-splines to NURPS. Proc. of Curve and Surface Fitting, Saint- Malo, 45–54. 1999. E. Vanraes, J. Windmolders, A. Bultheel, and P. Dierckx. Automatic construction of control triangles for subdivided Powel-Sabin splines. CAGD, 21(7):671–682, 2004. J. Maes, A. Bultheel. Modeling sphere-like manifolds with spherical Powell–Sabin B-splines. CAGD, 24 79–89, 2007. H. Speleers, P. Dierckx, and S. Vandewalle. Weight control for modelling with NURPS surfaces. CAGD, 24(3):179–186, 2007. D. Sbibih, A. Serghini, A. Tijini. Polar forms and quadratic spline quasi-interpolants on Powell–Sabin partitions. IMA Applied Numerical Mathematic, 2008. H. Speleers, P. Dierckx, S. Vandewalle. Quasi-hierarchical Powell–Sabin B-splines. CAGD, 2008.
5
Authors Professor at Katholieke Universiteit Leuven( 鲁汶大学 ), Computerwetenschappen. Paul Dierckx Research Interests: Splines functions, Powell-Sabinsplines. Curves and Surface fitting. Computer Aided Geometric Design. Numerical Simulation.
6
Authors Stefan Vandewalle Professor at Katholieke Universiteit Leuven, Faculty of, CS Research Projects: Algebraic multigrid for electromagnetics. High frequency oscillatory integrals and integral equations. Stochastic and fuzzy finite element methods. Optimization in Engineering. Multilevel time integration methods.
7
Problem State (Powell,Sabain,1977) 9 conditions vs. 6 coefficients
8
A lemma
9
PS refinement Nine degrees of freedom
10
PS refinement The dimension equals 3n.
11
Other refinement
12
A theorem
13
Normalized PS-spline(Dierckx, 97) Local support Convex partition of unity. Stability
14
Obtain the basis function Step 1.
15
Obtain the basis function Step 2.
16
Obtain the basis function Step 3.
17
Obtain the basis function Step 4.
18
PS-splines
19
Choice of PS triangles To calculate triangles of minimal area Simplify the treatment of boundary conditions
20
PS control triangles
22
A Bernstein-Bézier representation
23
A Powell-Sabin surface
24
Local support(Dierckx,92)
25
Explicit expression for PS-splines
26
Normalized PS B-splines Necessary and sufficient conditions:
27
The control points
30
The Bézier ordinates of a PS-spline
31
Spline subdivision(Vanraes, 2004) Refinement rules of the triangulation
32
Refinement rules
35
Construction of refined control triangles
36
Triadically subdivided spline
37
Application Visualization
41
QHPS(Speleers,08)
43
Data fitting
47
Rational Powell-Sabin surfaces
52
B-spline representation for PS splines on the sphere(Maes,07)
57
Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.