Download presentation
1
Cyclone and Frontal Structure and Evolution
Professor Cliff Mass Department of Atmospheric Sciences University of Washington
2
For much of the 20th century the dominant paradigm for cyclone/frontal evolution has been the Norwegian Cyclone Model (Bergen School) Bjernkes, 1919
3
Concept of Air Flows in Cyclones
4
Concept of Evolution of Cyclones Bjerknes and Solberg 1922
5
Stationary Polar Front
Wave Forming on Polar Front
6
Wave Amplifies Occlusion as Cold Front Catches Up to Warm Front
7
Occlusion Lengthens and System Weakens
8
Warm and Cold Occlusions
9
Norwegian Cyclone Model (NCM)
It was an important and revolutionary advance at the time. First to connect three dimensional trajectories with clouds and precipitation. Still found in many textbooks today Over flat land away from water and terrain, reality often approximates gross characteristics of the NCM. However, there are some major problems with the Norwegian Cyclone model that have been revealed by modern observations and modeling.
10
Some Problems With The Norwegian Cyclone Model
Different structures and evolutions of fronts and cyclones often observed over water and over/downstream of mountain barriers. Does not properly consider the role of the middle to upper troposphere. No upper levels fronts. Major deficiencies regarding the occlusion process. Does not properly consider that cyclogenesis and frontogenesis occur simultaneously.
11
Consider one problem area: the occlusion process
12
Classic Idea: Occlusion Type Determined By Temperature Contrast Behind Cold Front and in Front of Warm Front (“the temperature rule”)
13
But reality is very different
From Stoelinga et al 2002, BAMS
14
Literature Review Schultz and Mass (1993) examined all published cross sections of occluded fronts. Found no relationship between the relative temperatures on either side of the occluded front and the resulting structure. Of 25 cross sections, only three were cold-type occlusions. Of these three, one was a schematic without any actual data, one had a weak warm front, and one could be reanalyzed as a warm-type occlusion Cold-type occlusions appear rare.
15
An Improved View: The Static Stability Rule of Occluded Front Slope
An occluded front slopes over the statically more stable air, not the colder air. A cold occlusion results when the statically more stable air is behind the cold front. When the statically more stable air lies ahead of the warm front, a warm occlusion is formed.
16
An Example
17
Another Example
18
According to the Norwegian Cyclone Model Cyclones Begin to Weaken When They Start to Occlude
In reality, observations often show that cyclones continue to deepen for many hours after the formation of the occluded front, reaching central pressures many hPa deeper than at the time often occluded-front formation. Example: 29 of the 91 northeast United States cyclones for which surface analyses appear in Volume 2 of Kocin and Uccellini (2004) deepen 8–24 mb during the 12–24 h after formation of the occluded front
19
Intensification after Occluded Frontogeneis
This makes sense since cyclogenesis depends on three-dimensional dynamics and dynamics. Such mechanisms for cyclogenesis can be undertood from quasigeostrophic, Petterssen–Sutcliffe development theory, baroclinic instability ideas, or potential-vorticity.
20
Is Frontal Catch-Up the Essential Characteristic of Occluded Front Development?
Not all occluded fronts develop from the cold fronts overtaking warming fronts. Far more fundamental is the distortion of warm and cold air by vortex circulations.
21
Even in a nondivergent barotropic model where “isotherms” are passively advected by the flow, occluded-like warm-air and cold-air tongues can develop
22
Occlusion This gradient in tangential wind speed takes the initially straight isotherms and differentially rotates them. The differential rotation of the isotherms increases the gradient (i.e., frontogenesis) The lengthening and spiraling of the isotherms brings the cold- and warm-air tongues closer
23
Oceanic Cyclone Structure
24
Shapiro-Keyser Model of Oceanic Cyclones
25
Major Elements of S-K Model
Weak cold front Northern part of cold front is very weak (“fractured”) Not much evidence of classic occlusion (well defined tongue of warm air projected to low center). “T-Bone” structure: cold front intersects the warms front at approximately a right angle Strong back bent (or bent back) warm front. Warm air seclusion near the low center.
26
Simulation of the QE-II Storm
27
Neiman and Shapiro 1993
29
Air-Sea Interactions Warm the Cold Air, Weakening the Cold Front
31
Cross Section Across Cold Front
32
Cross Section Across Warm Front
34
Warm Seclusion Stage
35
Cross Section Across Warm Front and Associated Low-level Jet
36
Cross Section Across Warm-Air Seclusion: Circulation Weakens With Height
37
Strongest Winds With Back-Bent Warm Front
41
The Norwegian Cyclone Model Was Developed over the Eastern Atlantic and Europe, Might Development be Different In Other Midlatitude Locations Where the Large Scale Flow is Different?
42
Confluent Diffluent
43
Confluent Diffluent
44
There is considerable literature demonstrating different cyclone-frontal evolutions in differing synoptic environments.
45
Confluent versus diffluent synoptic flow
The Norwegian Cyclone model was developed in a region of generally diffluent flow (eastern Atlantic and Europe). How does confluent and diffluent flow influence evolution?
46
Add a vortex to various synoptic flows and simulate the thermal evolution
47
Just Vortex
48
Confluence-Like Western Side of Oceans
49
Looks Like Shapiro-Keyser Model of Oceanic Cyclones
S-K developed over western oceans during the Erica field experiment. Fractured cold front, strong bent-back warm/occluded front.
50
Summary
51
Diffluent Flow
52
Confluent Flow Strong cold front and weaker warm front
Resembles Norwegian Cyclone Model (NCM) NCM devised over a region of confluent flow.
53
Summary
54
Major Mountain Barriers and Land/Water Configurations Can Have a Large Impact on Cyclone and Frontal Structures
55
How Does Different Drag Between Ocean and Land Change Cyclone and Frontal Structures?
56
Adiabatic, Primitive Equation Model
57
Ocean Drag Land Drag
58
The Impact of Mountains Barriers on Cyclone Structure
Major topographic barriers can have a profound influence on cyclone and frontal structure. Barriers destroy low level front structures, weaken cyclone circulations, create new structures (e.g., lee troughs and windward ridges), and restricts the motions of cold and warm air.
59
U.S. Terrain Impacts When flow is relatively zonal synoptic structures are greatly changed over and downstream of the Rockies. Takes roughly 1000 km for structures to appear more “classical” Classic reference: Palmen and Newton (1969)
61
Steenburgh and Mass (Mon. Wea. Rev., 1994)
Detailed modeling study of the cyclone/frontal development east of the Rockies.
65
Conceptual Model
72
Cold Fronts Aloft And Forward Tilting Frontal Zones
78
Dry Lines or
79
Dry Lines Associated with large horizontal gradients in moisture, but not necessarily temperature. Results from the interaction of cyclones and fronts with large-scale terrain. Found over the U.S. Midwest, northern India, China, central West Africa and other locations. Acts as a focus for convection, and particularly severe convection. Most prevalent during spring/early summer in U.S.
80
Dry Line Surface boundary between warm, moist air and hot, dry air.
Surface dry line Well-mixed warm air Inversion or cap
81
Typical Dryline Temperatures in degrees Celsius ©1993 Oxford University Press -- From: Bluestein, Synoptic-Dynamic Meteorology in Midlatitudes, Volume II
82
Southern Plains Dry Line
©1993 Oxford University Press -- From: Bluestein, Synoptic-Dynamic Meteorology in Midlatitudes, Volume II Temperatures in degrees Celsius
83
Trajectories Fundamentally the dry line represents a trajectory discontinuity between moist southerly flow and flow descending from higher elevations. Can only happen relatively close to the upstream barrier (no more than 1000 km) since otherwise air would swing southward behind the low system and thus would be cool and somewhat moist.
84
DRY LINE L Warm, Moist
85
NO DRY LINE— Get Cold Front L
86
Indian Dryline
88
Dew Point Gradients Associated with Indian Dry Line
89
Dry Line: Tends to Move Eastward During the Day and Westward At Night
After sunrise, the sun will warm the surface which will warm the air near the ground. This air will mix with the air above the ground. Since the air above the moist layer is dry (and is much larger than the moist layer), the mixed air will dry out. The dry line boundary will progress toward the deeper moisture.
90
Dry Line Boundary after mixing Top of moist layer before mixing
Hot, Dry Air—Usually Well Mixed Warm, Moist Air Initial Position of the Dry Line Position of the Dry Line after mixing
91
Dry Line After sunset, a nocturnal inversion forms and the winds in the moist air respond to surface pressure features. The dry line may progress back toward the west .
92
West East Note weak inversion or “cap” over low-level moist layer east of the surface dry line
93
Sounding West of the Dryline
NCAR Sounding West of the Dryline Albuquerque, NM 12Z June 1998 West Winds Very Dry
94
Sounding East of the Dryline
NCAR Sounding East of the Dryline Oklahoma City, OK 12Z June 1998 South Winds Moist
95
Aircraft Study of the Dry Line
96
Convection Tends to Focus On the Dryline
97
Simulation of a Thunderstorm Initiation Along Dryline in TX Panhandle
Note converging winds and rising motion
98
Storm Initiation Along a Dry Line
99
Why is a dry line conducive for strong convection?
Low level confluence and convergence produce upward motion. The cap allows the build-up of large values of Convective Available Potential Energy (CAPE) East of the surface dry line, the existence of a layer of dry air over moist air enhances convective/potential instability.
100
Greatest Potential for Convective Development Exists at the Intersection between the Dry Line and Approaching Cold Front
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.