Download presentation
1
Probabilistic Inference Lecture 1
M. Pawan Kumar Slides available online
2
About the Course 7 lectures + 1 exam Probabilistic Models – 1 lecture
Energy Minimization – 4 lectures Computing Marginals – 2 lectures Related Courses Probabilistic Graphical Models (MVA) Structured Prediction
3
Instructor Assistant Professor (2012 – Present)
Center for Visual Computing 12 Full-time Faculty Members 2 Associate Faculty Members Research Interests Probabilistic Models Machine Learning Computer Vision Medical Image Analysis
4
Students Third year at ECP Specializing in Machine Learning and Vision
Prerequisites Probability Theory Continuous Optimization Discrete Optimization
5
Outline Probabilistic Models Conversions Exponential Family Inference
Example (on board) !!
6
Outline Probabilistic Models Markov Random Fields (MRF)
Bayesian Networks Factor Graphs Conversions Exponential Family Inference
7
MRF Unobserved Random Variables Neighbors
Edges define a neighborhood over random variables
8
MRF Variable Va takes a value or a label va from a set L
= {l1, l2,…, lh} V = v is called a labeling Discrete, Finite
9
MRF MRF assumes the Markovian property for P(v) V1 V2 V3 V4 V5 V6 V7
10
MRF Va is conditionally independent of Vb given Va’s neighbors
Hammersley-Clifford Theorem
11
MRF Potential ψ12(v1,v2) Potential ψ56(v5,v6)
Probability P(v) can be decomposed into clique potentials
12
MRF Potential ψ1(v1,d1) Observed Data
Probability P(v) proportional to Π(a,b) ψab(va,vb) Probability P(d|v) proportional to Πa ψa (va,da)
13
MRF Πa ψa(va,da) Π(a,b) ψab(va,vb) Probability P(v,d) = Z
Z is known as the partition function
14
MRF High-order Potential ψ4578(v4,v5,v7,v8) d1 d2 d3 V1 V2 V3 d4 d5 d6
15
Pairwise MRF Unary Potential ψ1(v1,d1) Pairwise Potential ψ56(v5,v6)
Πa ψa(va,da) Π(a,b) ψab(va,vb) Probability P(v,d) = Z Z is known as the partition function
16
MRF A is conditionally independent of B given C if
there is no path from A to B when C is removed
17
Conditional Random Fields (CRF)
V1 V2 V3 d4 d5 d6 V4 V5 V6 d7 d8 d9 V7 V8 V9 CRF assumes the Markovian property for P(v|d) Hammersley-Clifford Theorem
18
CRF Probability P(v|d) proportional to Πa ψa(va;d) Π(a,b) ψab(va,vb;d)
Clique potentials that depend on the data
19
CRF Πa ψa (va;d) Π(a,b) ψab(va,vb;d) Probability P(v|d) = Z
Z is known as the partition function
20
MRF and CRF Πa ψa(va) Π(a,b) ψab(va,vb) Probability P(v) = Z V1 V2 V3
21
Outline Probabilistic Models Markov Random Fields (MRF)
Bayesian Networks Factor Graphs Conversions Exponential Family Inference
22
Bayesian Networks Directed Acyclic Graph (DAG) – no directed loops
V1 V2 V3 V4 V5 V6 V7 V8 Directed Acyclic Graph (DAG) – no directed loops Ignoring directionality of edges, a DAG can have loops
23
Bayesian Networks V1 V2 V3 V4 V5 V6 V7 V8 Bayesian Network concisely represents the probability P(v)
24
Bayesian Networks Probability P(v) = Πa P(va|Parents(va))
P(v1)P(v2|v1)P(v3|v1)P(v4|v2)P(v5|v2,v3)P(v6|v3)P(v7|v4,v5)P(v8|v5,v6)
25
Bayesian Networks Courtesy Kevin Murphy
26
Bayesian Networks V1 V2 V3 V4 V5 V6 V7 V8 Va is conditionally independent of its ancestors given its parents
27
Bayesian Networks Conditional independence of A and B given C
Courtesy Kevin Murphy
28
Outline Probabilistic Models Markov Random Fields (MRF)
Bayesian Networks Factor Graphs Conversions Exponential Family Inference
29
Factor Graphs Two types of nodes: variable nodes and factor nodes
Bipartite graph between the two types of nodes
30
Factor Graphs ψa(v1,v2) V1 V2 V3 a b c d e V4 V5 V6 f g Factor graphs concisely represents the probability P(v)
31
Factor Graphs ψa({v}a)
b c d e V4 V5 V6 f g Factor graphs concisely represents the probability P(v)
32
Factor Graphs ψb(v2,v3) V1 V2 V3 a b c d e V4 V5 V6 f g Factor graphs concisely represents the probability P(v)
33
Factor Graphs ψb({v}b)
d e V4 V5 V6 f g Factor graphs concisely represents the probability P(v)
34
Factor Graphs ψb({v}b) Πa ψa({v}a) Probability P(v) = Z
d e V4 V5 V6 f g Πa ψa({v}a) Probability P(v) = Z Z is known as the partition function
35
Outline Probabilistic Models Conversions Exponential Family Inference
36
MRF to Factor Graphs
37
Bayesian Networks to Factor Graphs
38
Factor Graphs to MRF
39
Outline Probabilistic Models Conversions Exponential Family Inference
40
Motivation Random Variable V Label set L = {l1, l2,…, lh}
Samples V1, V2, …, Vm that are i.i.d. Functions ϕα: L Reals α indexes a set of functions Empirical expectations: μα = (Σi ϕα(Vi))/m Expectation wrt distribution P: EP[ϕα(V)] = Σi ϕα(li)P(li) Given empirical expectations, find compatible distribution Underdetermined problem
41
Maximum Entropy Principle
max Entropy of the distribution s.t. Distribution is compatible
42
Maximum Entropy Principle
max -Σi P(li)log(P(li)) s.t. Distribution is compatible
43
Maximum Entropy Principle
max -Σi P(li)log(P(li)) s.t. Σi ϕα(li)P(li) = μα for all α Σi P(li) = 1 P(v) proportional to exp(-Σα θαϕα(v))
44
Exponential Family Random Variable V = {V1, V2, …,Vn}
Label set L = {l1, l2,…, lh} Labeling V = v, va L for all a {1, 2,…, n} Functions ϕα: Ln Reals α indexes a set of functions P(v) = exp{-Σα θαΦα(v) - A(θ)} Parameters Sufficient Statistics Normalization Constant
45
Minimal Representation
P(v) = exp{-Σα θαΦα(v) - A(θ)} Parameters Sufficient Statistics Normalization Constant No non-zero c such that Σα cαΦα(v) = Constant
46
Ising Model P(v) = exp{-Σα θαΦα(v) - A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {l1, l2}
47
Ising Model P(v) = exp{-Σα θαΦα(v) - A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {-1, +1} Neighborhood over variables specified by edges E Sufficient Statistics Parameters va θa for all Va V vavb θab for all (Va,Vb) E
48
Ising Model P(v) = exp{-Σa θava -Σa,b θabvavb- A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {-1, +1} Neighborhood over variables specified by edges E Sufficient Statistics Parameters va θa for all Va V vavb θab for all (Va,Vb) E
49
Interactive Binary Segmentation
50
Interactive Binary Segmentation
Foreground histogram of RGB values FG Background histogram of RGB values BG ‘+1’ indicates foreground and ‘-1’ indicates background
51
Interactive Binary Segmentation
More likely to be foreground than background
52
Interactive Binary Segmentation
θa proportional to -log(FG(da)) + log(BG(da)) More likely to be background than foreground
53
Interactive Binary Segmentation
More likely to belong to same label
54
Interactive Binary Segmentation
θab proportional to -exp(-(da-db)2) Less likely to belong to same label
55
Rest of lecture 1 ….
56
Exponential Family P(v) = exp{-Σα θαΦα(v) - A(θ)} Parameters
Sufficient Statistics Log-Partition Function Random Variables V = {V1,V2,…,Vn} Random Variable Va takes a value or label va va L = {l1,l2,…,lh} Labeling V = v
57
Overcomplete Representation
P(v) = exp{-Σα θαΦα(v) - A(θ)} Parameters Sufficient Statistics Log-Partition Function There exists a non-zero c such that Σα cαΦα(v) = Constant
58
Ising Model P(v) = exp{-Σα θαΦα(v) - A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {l1, l2}
59
Ising Model P(v) = exp{-Σα θαΦα(v) - A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {0, 1} Neighborhood over variables specified by edges E Sufficient Statistics Parameters Ia;i(va) θa;i for all Va V, li L θab;ik Iab;ik(va,vb) for all (Va,Vb) E, li, lk L Ia;i(va): indicator for va = li Iab;ik(va,vb): indicator for va = li, vb = lk
60
Ising Model P(v) = exp{-Σa Σi θa;iIa;i(va) -Σa,b Σi,k θab;ikIab;ik(va,vb) - A(θ)} Random Variable V = {V1, V2, …,Vn} Label set L = {0, 1} Neighborhood over variables specified by edges E Sufficient Statistics Parameters Ia;i(va) θa;i for all Va V, li L θab;ik Iab;ik(va,vb) for all (Va,Vb) E, li, lk L Ia;i(va): indicator for va = li Iab;ik(va,vb): indicator for va = li, vb = lk
61
Interactive Binary Segmentation
Foreground histogram of RGB values FG Background histogram of RGB values BG ‘1’ indicates foreground and ‘0’ indicates background
62
Interactive Binary Segmentation
More likely to be foreground than background
63
Interactive Binary Segmentation
θa;0 proportional to -log(BG(da)) θa;1 proportional to -log(FG(da)) More likely to be background than foreground
64
Interactive Binary Segmentation
More likely to belong to same label
65
Interactive Binary Segmentation
θab;ik proportional to exp(-(da-db)2) if i ≠ k θab;ik = 0 if i = k Less likely to belong to same label
66
Metric Labeling P(v) = exp{-Σα θαΦα(v) - A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {l1, l2, …, lh}
67
Metric Labeling P(v) = exp{-Σα θαΦα(v) - A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {0, …, h-1} Neighborhood over variables specified by edges E Sufficient Statistics Parameters Ia;i(va) θa;i for all Va V, li L θab;ik Iab;ik(va,vb) for all (Va,Vb) E, li, lk L θab;ik is a metric distance function over labels
68
Metric Labeling P(v) = exp{-Σa Σi θa;iIa;i(va) -Σa,b Σi,k θab;ikIab;ik(va,vb) - A(θ)} Random Variable V = {V1, V2, …,Vn} Label set L = {0, …, h-1} Neighborhood over variables specified by edges E Sufficient Statistics Parameters Ia;i(va) θa;i for all Va V, li L θab;ik Iab;ik(va,vb) for all (Va,Vb) E, li, lk L θab;ik is a metric distance function over labels
69
Stereo Correspondence
Disparity Map
70
Stereo Correspondence
L = {disparities} Pixel (xa,ya) in left corresponds to pixel (xa+va,ya) in right
71
Stereo Correspondence
L = {disparities} θa;i is proportional to the difference in RGB values
72
Stereo Correspondence
L = {disparities} θab;ik = wab d(i,k) wab proportional to exp(-(da-db)2)
73
Pairwise MRF P(v) = exp{-Σα θαΦα(v) - A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {l1, l2, …, lh} Neighborhood over variables specified by edges E Sufficient Statistics Parameters Ia;i(va) θa;i for all Va V, li L θab;ik Iab;ik(va,vb) for all (Va,Vb) E, li, lk L
74
Pairwise MRF P(v) = exp{-Σa Σi θa;iIa;i(va) -Σa,b Σi,k θab;ikIab;ik(va,vb) - A(θ)} Random Variable V = {V1, V2, …,Vn} Label set L = {l1, l2, …, lh} Neighborhood over variables specified by edges E Πa ψa(va) Π(a,b) ψab(va,vb) Probability P(v) = Z A(θ) : log Z ψa(li) : exp(-θa;i) ψa(li,lk) : exp(-θab;ik) Parameters θ are sometimes also referred to as potentials
75
Pairwise MRF P(v) = exp{-Σa Σi θa;iIa;i(va) -Σa,b Σi,k θab;ikIab;ik(va,vb) - A(θ)} Random Variable V = {V1, V2, …,Vn} Label set L = {l1, l2, …, lh} Neighborhood over variables specified by edges E Labeling as a function f : {1, 2, … , n} {1, 2, …, h} Variable Va takes a label lf(a)
76
Pairwise MRF P(f) = exp{-Σa θa;f(a) -Σa,b θab;f(a)f(b) - A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {l1, l2, …, lh} Neighborhood over variables specified by edges E Labeling as a function f : {1, 2, … , n} {1, 2, …, h} Variable Va takes a label lf(a) Energy Q(f) = Σa θa;f(a) + Σa,b θab;f(a)f(b)
77
Pairwise MRF P(f) = exp{-Q(f) - A(θ)}
Random Variable V = {V1, V2, …,Vn} Label set L = {l1, l2, …, lh} Neighborhood over variables specified by edges E Labeling as a function f : {1, 2, … , n} {1, 2, …, h} Variable Va takes a label lf(a) Energy Q(f) = Σa θa;f(a) + Σa,b θab;f(a)f(b)
78
Outline Probabilistic Models Conversions Exponential Family Inference
79
Inference maxv ( P(v) = exp{-Σa Σi θa;iIa;i(va) -Σa,b Σi,k θab;ikIab;ik(va,vb) - A(θ)} ) Maximum a Posteriori (MAP) Estimation minf ( Q(f) = Σa θa;f(a) + Σa,b θab;f(a)f(b) ) Energy Minimization P(va = li) = Σv P(v)δ(va = li) P(va = li, vb = lk) = Σv P(v)δ(va = li)δ(vb = lk) Computing Marginals
80
Next Lecture … Energy minimization for tree-structured pairwise MRF
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.