Presentation is loading. Please wait.

Presentation is loading. Please wait.

Frolich, Human Anatomy, Mechanics of Movement Mechanics of Movement I: Muscle Force and Action Across Joints  Review muscle force generation  Muscle.

Similar presentations


Presentation on theme: "Frolich, Human Anatomy, Mechanics of Movement Mechanics of Movement I: Muscle Force and Action Across Joints  Review muscle force generation  Muscle."— Presentation transcript:

1 Frolich, Human Anatomy, Mechanics of Movement Mechanics of Movement I: Muscle Force and Action Across Joints  Review muscle force generation  Muscle Mechanics --force versus cross section --length versus strain  Lever mechanics and agonist/antagonists  Stabilizing the joint—isometric and eccentric contraction

2 Frolich, Human Anatomy, Mechanics of Movement Muscle Structure Review  Muscle fiber = muscle cell  Fibers lined up = direction of pull  Tendon attaches to bone  Muscle pulls on bone

3 Frolich, Human Anatomy, Mechanics of Movement Muscle Origin and Insertion  Origin  Proximal  Fixed  Insertion  Distal  Moves  (usually!!)

4 Frolich, Human Anatomy, Mechanics of Movement Mechanics of Contraction  Muscle fiber is one cell made up of myofibrils, each filled with myofilament proteins actin and myosin, all lined up along length of muscle cell.  Action potential or depolarization of membrane releases calcium  Calcium changes shape of actin so myosin cross- bridges form and “row” or pull in to center of sarcomere.

5 Frolich, Human Anatomy, Mechanics of Movement Visualizing muscle contraction How actin- myosin complex (sarcomere) shortens muscle

6 Frolich, Human Anatomy, Mechanics of Movement Summary of Muscle Organization/Function

7 Frolich, Human Anatomy, Mechanics of Movement Summary of Muscle Organization/Function

8 Frolich, Human Anatomy, Mechanics of Movement Summary of Muscle Organization/Function

9 Frolich, Human Anatomy, Mechanics of Movement Levels of Muscle Organization

10 Frolich, Human Anatomy, Mechanics of Movement Muscle Mechanics: Cross section versus force  Cross sectional area is proportional to Force of muscle

11 Frolich, Human Anatomy, Mechanics of Movement Muscle Mechanics: length versus force  Force generation depends on current length of muscle or overlap in actin/myosin of sarcomeres  Muscle force strongest between 80-120% of normal resting length— WHY? (don’t forget role of cross-bridges)  Most muscles arranged to work in this range

12 Frolich, Human Anatomy, Mechanics of Movement Muscle Mechanics: length versus total shortening  Length of muscle is proportional to ability to shorten (strain)  Number of sarcomeres in series gives shortening ability  Short, fat muscles  Lots of force  Less shortening range  Long, skinny muscles  Less force  More shortening range

13 Frolich, Human Anatomy, Mechanics of Movement Types of fascicle arrangements  Affects length and cross section of muscle  Thus affects force and shortening properties of muscle  See Muscle Mechanics if this doesn’t make sense

14 Frolich, Human Anatomy, Mechanics of Movement Long thin straight muscle versus short fat pinnate muscle  Gastrocnemius (calf muscle)  Short and bulky  Pinnate fibers  Great force, low shortening distance  Pushes off each step—”spring- loaded”  Sartorius  Tailor’s or hackey-sac muscle  Longest muscle in body’  Thin and straight fibers  Low force, great shortening distance

15 Frolich, Human Anatomy, Mechanics of Movement Muscle movement across joints is like lever system

16 Frolich, Human Anatomy, Mechanics of Movement Agonist/Antagonist muscles

17 Frolich, Human Anatomy, Mechanics of Movement Stabilization and Control Around Joint AgonistMain MoverE.g. biceps AntagonistOpposite motion E.g. triceps SynergistAids agonistE.g. brachialis  Antagonist often “fires” or contracts or is stimulated simultaneously with agonist to stabilize around joint during movement  NOTE: Muscle “contraction” or stimulus to “fire” does not always result in muscle shortening

18 Frolich, Human Anatomy, Mechanics of Movement Relation between muscle contraction (or “firing”) and shortening  Concentric contraction—muscle contracts and shortens to cause movement across joint  Isometric contraction—muscle contracts but stays same length to hold joint or body in same position  Eccentric contraction—muscle contracts while lengthening to stabilize joint during movement (most common in antagonist to slow movement caused by agonist)


Download ppt "Frolich, Human Anatomy, Mechanics of Movement Mechanics of Movement I: Muscle Force and Action Across Joints  Review muscle force generation  Muscle."

Similar presentations


Ads by Google