Download presentation
Presentation is loading. Please wait.
Published byKatrina Black Modified over 9 years ago
1
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu
2
1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline
3
References Exotic phases and quantum phase transitions: model systems and experiments, Rapporteur talk at the 24th Solvay Conference on Physics, "Quantum Theory of Condensed Matter", arXiv:0901.4103 Quantum magnetism and criticality, Nature Physics 4, 173 (2008), arXiv:0711.3015 Quantum phases and phase transitions of Mott insulators, arXiv:cond-mat/0401041
4
1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline
5
TlCuCl 3
6
An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.
7
N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001). TlCuCl 3 at ambient pressure
8
N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001). Sharp spin 1 particle excitation above an energy gap (spin gap) TlCuCl 3 at ambient pressure
9
Ground state has long-range Néel order Square lattice antiferromagnet
10
J J/ Weaken some bonds to induce spin entanglement in a new quantum phase
11
Square lattice antiferromagnet J J/ Ground state is a “quantum paramagnet” with spins locked in valence bond singlets
12
Pressure in TlCuCl 3
13
Quantum critical point with non-local entanglement in spin wavefunction
19
N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001). Sharp spin 1 particle excitation above an energy gap (spin gap) TlCuCl 3 at ambient pressure
21
Spin waves
24
Discussion of quantum rotor model
25
CFT3
32
Spin waves
36
Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008) TlCuCl 3 with varying pressure
37
Prediction of quantum field theory Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
38
CFT3
39
S. Wenzel and W. Janke, arXiv:0808.1418 M. Troyer, M. Imada, and K. Ueda, J. Phys. Soc. Japan (1997) Quantum Monte Carlo - critical exponents
40
Field-theoretic RG of CFT3 E. Vicari et al. S. Wenzel and W. Janke, arXiv:0808.1418 M. Troyer, M. Imada, and K. Ueda, J. Phys. Soc. Japan (1997)
41
1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline
42
1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline
43
Fermi surfaces in electron- and hole-doped cuprates Hole states occupied Electron states occupied
44
Spin density wave theory
46
Spin density wave theory in electron-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).
47
Spin density wave theory in electron-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).
48
Spin density wave theory in electron-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets
49
Spin density wave theory in electron-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Electron pockets
50
N. P. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002). Photoemission in NCCO
51
Spin density wave theory in hole-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).
52
Spin density wave theory in hole-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).
53
Spin density wave theory in hole-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Electron pockets Hole pockets
54
Spin density wave theory in hole-doped cuprates S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets
55
Spin density wave theory
57
1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline
58
1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin density waves in metals Paramagnon quantum criticality 3. Spin liquids and valence bond solids Schwinger-boson mean-field theory and U(1) gauge theory Outline
59
Half-filled band Mott insulator with spin S = 1/2 Triangular lattice of [Pd(dmit) 2 ] 2 frustrated quantum spin system X[Pd(dmit) 2 ] 2 Pd SC X Pd(dmit) 2 t’ t t Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007)
62
Anisotropic triangular lattice antiferromagnet Neel ground state for small J’/J Broken spin rotation symmetry
63
Anisotropic triangular lattice antiferromagnet
64
Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO)
65
Anisotropic triangular lattice antiferromagnet Possible ground state for intermediate J’/J N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
66
Anisotropic triangular lattice antiferromagnet Possible ground state for intermediate J’/J Valence bond solid (VBS) Broken lattice space group symmetry N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
67
Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry Possible ground state for intermediate J’/J Valence bond solid (VBS) N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
68
Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry Possible ground state for intermediate J’/J Valence bond solid (VBS) N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
69
Anisotropic triangular lattice antiferromagnet Broken lattice space group symmetry Possible ground state for intermediate J’/J Valence bond solid (VBS) N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
70
Anisotropic triangular lattice antiferromagnet
71
= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)
72
= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)
73
= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)
74
= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)
75
= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)
76
= Triangular lattice antiferromagnet Z 2 spin liquid N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) X.-G. Wen, Phys. Rev. B 44, 2664 (1991)
77
Excitations of the Z 2 Spin liquid = A spinon
78
Excitations of the Z 2 Spin liquid = A spinon
79
Excitations of the Z 2 Spin liquid = A spinon
80
Excitations of the Z 2 Spin liquid = A spinon
81
Anisotropic triangular lattice antiferromagnet
82
Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO)
83
Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb EtMe 3 P Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO) Spin gap Spin gap
84
Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb EtMe 3 P Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO) VBS order Spin gap Spin gap
85
M. Tamura, A. Nakao and R. Kato, J. Phys. Soc. Japan 75, 093701 (2006) Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, Phys. Rev. Lett. 99, 256403 (2007) Observation of a valence bond solid (VBS) in ETMe 3 P[Pd(dmit) 2 ] 2 Spin gap ~ 40 K J ~ 250 K X-ray scattering
86
Magnetic Criticality T N (K) Neel order Me 4 P Me 4 As EtMe 3 As Et 2 Me 2 As Me 4 Sb Et 2 Me 2 P EtMe 3 Sb EtMe 3 P Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato, J. Phys.: Condens. Matter 19, 145240 (2007) X[Pd(dmit) 2 ] 2 Et 2 Me 2 Sb (CO) VBS order Spin gap Spin gap
87
Discussion of Schwinger bosons on the square lattice and U(1) gauge theory http://qpt.physics.harvard.edu/leshouches/schwinger_bosons.pdf
88
Schwinger boson mean field theory on the square lattice and perturbative fluctuations Origin of gauge invariance
89
Schwinger boson mean field theory on the square lattice and perturbative fluctuations
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.