Download presentation
Presentation is loading. Please wait.
Published byWalter Lindsey Modified over 9 years ago
1
Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011
2
neurons cell type - intrinsic properties (densities of ionic channels, pumps, etc.) - morphology (geometry) - noisy, heterogeneous synapses ~20nm pre-synaptic cell post-synaptic cell synaptic dynamics - excitatory/inhibitory; electrical - fast/slow - facilitating/depressing - noisy, heterogeneous - delays connectivity network topology - specific structure - random; small world, local - heterogeneous components of neuronal networks
3
function and dysfunction activity in neuronal networks, e.g. synchrony intrinsic properties of neurons synaptic dynamics connectivity of neural circuits a fundamental challenge in neuroscience function
4
why could “synchrony” be important for function in neural systems? 1. coordination of overt behavior: locomotion, breathing, chewing, etc. shrimp swimming example: crayfish swimming B. Mulloney et al
5
why could “synchrony” be important for function in neural systems? 1.coordination of overt behavior: locomotion, breathing, chewing, etc. 2.cognition, information processing (e.g. in the cortex) … ? 1.5-4.5mm Should we expect synchrony in the cortex?
6
1.5-4.5mm Should we expect synchrony in the cortex?
7
Figure 1: A geodesic net with 128 electrodes making scalp contact with a salinated sponge material is shown (Courtesy Electrical Geodesics, Inc). This is one of several kinds of EEG recording methods. Reproduced from Nunez (2002). time (sec) “raw” EEG recordings EEG: “brain waves”: behavioral correlates, function/dysfunction
8
in vivo -band (30-70 Hz) cortical oscillations. large-scale cortical oscillations arise from synchronous activity in neuronal networks
9
how can we gain insight into the functions and dysfunctions related to neuronal synchrony? 1.Develop appropriate/meaningful ways of measuring/quantifying synchrony. 2. Identify mechanisms underlying synchronization – both from the dynamical and biophysical standpoints.
10
1. measuring correlations/levels of synchrony Swadlow, et al. i.limited spatio-temporal data. ii.measuring phase iii.spike-train data (embeds “discrete” spikes in continuous time) iv.appropriate assessment of chance correlations. v.higher order correlations (temporally and spatially)
11
synchrony in neuronal networks intrinsic properties of neurons synaptic dynamics connectivity of neural circuits 2. identify mechanisms underlying synchrony
12
“fast” excitatory synapses synchrony “slow” excitatory synapse asynchrony [mechanism A] synchrony in networks of neuronal oscillators movie: LIFfastEsynch.avi movie: LIFslowEasynch.avi
13
Some basic mathematical frameworks: 1. phase models (e.g. Kuramoto model) [mechanism A] synchrony in networks of neuronal oscillators
14
Some basic mathematical frameworks: 2. theory of weak coupling (Malkin, Neu, Kuramoto, Ermentrout-Kopell, …) [mechanism A] synchrony in networks of neuronal oscillators iPRC synaptic current
15
phase response curve (PRC) ( ) quantifies the phase shifts in response to small, brief ( -function) input at different phases in the oscillation.
16
infinitesimal phase response curve (iPRC) ( ) the PRC normalized by the stimulus “amplitude” (i.e. total charge delivered).
17
[mechanism A] synchrony in networks of neuronal oscillators Some mathematical frameworks: 2. spike-time response curve (STRC) maps phase difference between pair of coupled neurons when neuron 1 fires for the k th time. phase response curve for neuron for a given stimulus..
18
threshold blue cell has just been reset after crossing threshold. pair of coupled cells: reduction to 1-D map
19
threshold red cell hits threshold. pair of coupled cells: reduction to 1-D map
20
threshold blue cell is phase advanced by synaptic input from red cell; red cell is reset. pair of coupled cells: reduction to 1-D map
21
threshold blue cell hits threshold. pair of coupled cells: reduction to 1-D map
22
threshold red cell is phase advanced by synaptic input from blue cell; blue cell is reset. pair of coupled cells: reduction to 1-D map
23
threshold pair of coupled cells: reduction to 1-D map
24
(similar to Strogatz and Mirillo, 1990) pair of coupled cells: reduction to 1-D map * shape of Z determines phase-locking dynamics
25
[mechanism B] correlated/common input into oscillating or excitable cells (i.e., the neural Moran effect) input output … possible network coupling too
26
[mechanism C] self-organized activity in networks of excitable neurons: feed-forward networks e.g. AD Reyes, Nature Neurosci 2003
27
=0.0001, 75x50 network, r c =50, c=0.37 [mechanism C] self-organized activity in networks of excitable neurons: random networks (i) Topological target patterns units: excitable dynamics with low level of random spontaneous activation (Poisson process); network connectivity: sparse (Erdos-Renyi) random network; strong bidirectional coupling. e.g. Lewis & Rinzel, Network: Comput. Neural Syst. 2000 movie: topotargetoscill.avi
28
(i) topological target patterns waves (ii) reentrant waves [mechanism C] self-organized rhythms in networks of excitable neurons e.g. Lewis & Rinzel, Neuroomput. 2001 spontaneous random activation stops spontaneous random activation stops
29
Conclusions / Discussions / Open questions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.