Download presentation
Presentation is loading. Please wait.
Published byBlaze Barnard Chapman Modified over 9 years ago
1
INNOVATIVE OPTICAL PARAMETRIC SOURCES USING ISOTROPIC SEMICONDUCTORS E. Rosencher, M. Baudrier, R. Haidar,A. Godard, M. Lefebvre and Ph. Kupecek* ONERA * University PMC
2
Why bother? Semiconductor (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions SUMMARY
3
Why bother? Semiconductor (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions
4
Tunability Laser Diodes vs OPO 10 CRYOGENY Single diodesingle Pulsed OPO
5
Atmospheric transmission (dry weather, sea level, 5 km)
6
Why bother? Semiconductor (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions
7
SEMICONDUCTORS 0.45 µm < cutoff < 20 µm (0.05 eV < E gap < 3 eV) Second Fermi Golden Rule Harmonic oscillator High nonlinear performance (quantum theory of solids) : Large transparency region Mature technology III-V LiNbO 3 46810121416182022 10 20 30 40 50 60 70 (µm) ZnSe GaAs Transmission including Fresnel losses (%) Isotropic materials NO possible phase matching scenario Low cost
8
Propriétés optiques non linéaires des matériaux
9
First order quasi-phase matching I DFG k.L +d -d Cohérence
10
NbLiO 3 5000 V 10 kg/cm 2 Ferroelectric polling M. Fejer et al (Standord ) Molecular bonding (GaAs, ZnSe) TRT, ONERA, Stanford GaAs ZnSe ….. Quasi-phase matching techniques Fresnel birefrigence R. Haidar et al (ONERA ) Localized growth E. Lallier et al; M. Fejer et al Ge
11
Periodical materials breakthrough PPLN POGaAs 2 cm 40 µm f = 10 kHz 20 ns 98%
12
Precise coherence length ( C ) determination experimental set-up HgCdTe detector Filters Wedge 1.06 µm 11 LiNbO 3 OPO wavelength control 3 & 2 motorized translation Pulse Energy : 1mJ, 15ns = 2 cm -1 I 1 – F x cos ( k.L) thickness (a few deg.)
13
Advantage of large gap semiconductors in the IR: Large coherence length R. Haïdar, A. Mustelier, Ph. Kupecek, E. Rosencher, R. Triboulet, Ph. Lemasson and G. Mennerat, JAP 2002 Adashi Li
14
Why bother? Semiconductor (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions
15
Quasi Phase Matching by Total Internal Reflexion * (Fresnel Birefringence) * Armstrong et al., Phys. Rev. 127, 1918-1939 (1962) t L F d up d down tot k.L F if d up. d down > 0 if d up. d down < 0 F = - -
16
Angle tuning tot Fresnel phase matching z I Optimum thickness L (2n+1) c Dispersion phase matching z I L Fresnel QPM
17
Haïdar et al., APL Fresnel QPM non resonant QPM resonant QPM
18
Resonant Fresnel angle allowing (1.9 µm, 2.3 µm) 8 µm Optimum angle for Fresnel birefringence phase matching Haïdar et al., JOSA B
19
Fresnel phase matching Configuration : experimental set-up HgCdTe detector Filters 1.06 µm LiNbO 3 OPO wavelength control 3 & 2 Pulse Energy : 1mJ, 15ns = 2 cm -1 11 ZnSe plate R. Haïdar, A. Mustelier, Ph. Kupecek, E. Rosencher, R. Triboulet, Ph. Lemasson, APL 2002 10 mm ZnSe
20
Photonic yield : MIR Source :.1 µJ between 9 µm and 13 µm Pump 3 : 150 µJ Fresnel quasi-phase matching: GaAs
21
Limitations of Fresnel QPM: influence of wafer roughness ZnSeGaAs 114 27452545 9898.699.499.6
22
shift x N max 200 Limitation to Fresnel QPM: Goos-Hänchen shift Equivalent to walk off
23
Why bother? Semiconductor (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions
24
Few lines of trivial theory Very predictive: - conversion yield proportional to sample length - independant on polarisation - resonant for - N/N eff easily measurable and compared with materials Non depletion approximation 3 processes independant with
25
RANDOM PHASE MATCHING Résonance pour taille de grain = longueur de cohérence 110 axis polycristalline Non linear diffusion in powder liquid and gas Phase mismatch (a) (b) Quasi-phase matching (c) (d) Baudrier, Haidar, Kupecek, Rosencher (Nature, 2004.)
26
Why bother? Semiconductor (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions
27
Cr 2+ -doped ZnSe 0.510 µm VB CB High optical cross-section High solubility Large bandwith Good ONL materials Good lasing materials Self OPO S T 2.1 2.3 µm Cr 2 + 1.9 µm Pompe: 1.9 µm Laser: 2.3 µm DFG-OPO: 10 µm ZnSe:Cr X WiFi collapse !
28
Self-DFG Cr:ZnSe laser—set-up 50% single-pass absorption of the 1.9-µm pump energy 45° internal phase-matching angle (spp), 13 internal reflections Simple design: easy alignments, but high losses 1.9 µm pump 2.4 µm laser 9 µm DFG Cr:ZnSe single-crystal (uncoated) OPO Nd:YAG 1.06 µm 10 ns 30 Hz Tmax @ 1.9 µm R = 95% @ 2.4 µm Rmax @ 1.9 µm R = 95% @ 2.4 µm Tmax @ 9 µm
29
Laser (2.4 µm) 5% yield (/absorbed energy) Small coupler transmission to maximize the 2.4-µm intracavity electric field Self-DFG Cr:ZnSe laser – first results First demonstration of self-DFG in Cr:ZnSe laser 9-µm DFG preliminary results Note: thresholdless emission !
30
Small temporal overlap of pump and laser pulses Limited DFG efficiency Solution: longer pulse pump source Emitted DFG spectrum Broad line (no intracavity spectral filter) Fixed central wavelength Possible tuning schemes: pump or laser tuning + crystal rotation Self-DFG Cr:ZnSe laser – discussions
31
Why bother? Semiconductor (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions
32
Isotropic semiconductors are becoming viable solutions for non linear optical sources in the mid-infrared Fresnel phase matching allows very large tunability from the mid-IR to the terahertz Cr 2 + doped ZnSe allows thresholdless self DFG generation which greatly simplify source architectures: first realisation presented! Surface roughness principal limitations to Fresnel QPM Next step: electrical pumping of OPO ! Random phase matching works in poly ZnSe and allows very large samples
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.