Presentation is loading. Please wait.

Presentation is loading. Please wait.

INNOVATIVE OPTICAL PARAMETRIC SOURCES USING ISOTROPIC SEMICONDUCTORS E. Rosencher, M. Baudrier, R. Haidar,A. Godard, M. Lefebvre and Ph. Kupecek* ONERA.

Similar presentations


Presentation on theme: "INNOVATIVE OPTICAL PARAMETRIC SOURCES USING ISOTROPIC SEMICONDUCTORS E. Rosencher, M. Baudrier, R. Haidar,A. Godard, M. Lefebvre and Ph. Kupecek* ONERA."— Presentation transcript:

1 INNOVATIVE OPTICAL PARAMETRIC SOURCES USING ISOTROPIC SEMICONDUCTORS E. Rosencher, M. Baudrier, R. Haidar,A. Godard, M. Lefebvre and Ph. Kupecek* ONERA * University PMC

2 Why bother? Semiconductor  (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions SUMMARY

3 Why bother? Semiconductor  (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions

4 Tunability Laser Diodes vs OPO 10 CRYOGENY Single diodesingle Pulsed OPO

5 Atmospheric transmission (dry weather, sea level, 5 km)

6 Why bother? Semiconductor  (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions

7 SEMICONDUCTORS 0.45 µm < cutoff  < 20 µm (0.05 eV < E gap < 3 eV) Second Fermi Golden Rule Harmonic oscillator High nonlinear performance (quantum theory of solids) :   Large transparency region Mature technology III-V  LiNbO 3 46810121416182022 10 20 30 40 50 60 70 (µm) ZnSe GaAs Transmission including Fresnel losses (%) Isotropic materials  NO possible phase matching scenario  Low cost 

8 Propriétés optiques non linéaires des matériaux

9 First order quasi-phase matching I DFG  k.L +d -d  Cohérence

10 NbLiO 3 5000 V 10 kg/cm 2 Ferroelectric polling M. Fejer et al (Standord ) Molecular bonding (GaAs, ZnSe) TRT, ONERA, Stanford GaAs ZnSe ….. Quasi-phase matching techniques Fresnel birefrigence R. Haidar et al (ONERA ) Localized growth E. Lallier et al; M. Fejer et al Ge

11 Periodical materials breakthrough PPLN POGaAs 2 cm 40 µm f = 10 kHz 20 ns 98%

12 Precise coherence length (  C ) determination experimental set-up HgCdTe detector Filters Wedge 1.06 µm 11 LiNbO 3 OPO wavelength control  3 &  2 motorized translation Pulse Energy : 1mJ, 15ns  = 2 cm -1 I   1 – F x cos (  k.L) thickness  (a few deg.)

13 Advantage of large gap semiconductors in the IR: Large coherence length R. Haïdar, A. Mustelier, Ph. Kupecek, E. Rosencher, R. Triboulet, Ph. Lemasson and G. Mennerat, JAP 2002 Adashi Li

14 Why bother? Semiconductor  (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions

15 Quasi Phase Matching by Total Internal Reflexion * (Fresnel Birefringence) * Armstrong et al., Phys. Rev. 127, 1918-1939 (1962) t L    F d up d down           tot  k.L  F   if d up. d down > 0  if d up. d down < 0  F =   -   -  

16 Angle tuning  tot  Fresnel phase matching z I Optimum thickness L  (2n+1)  c Dispersion phase matching z I L    Fresnel QPM

17 Haïdar et al., APL Fresnel QPM non resonant QPM resonant QPM

18 Resonant Fresnel angle allowing (1.9 µm, 2.3 µm)  8 µm Optimum angle for Fresnel birefringence phase matching Haïdar et al., JOSA B

19 Fresnel phase matching Configuration : experimental set-up HgCdTe detector Filters 1.06 µm LiNbO 3 OPO wavelength control  3 &  2 Pulse Energy : 1mJ, 15ns  = 2 cm -1 11 ZnSe plate R. Haïdar, A. Mustelier, Ph. Kupecek, E. Rosencher, R. Triboulet, Ph. Lemasson, APL 2002 10 mm ZnSe

20 Photonic yield : MIR Source :.1 µJ between 9 µm and 13 µm Pump  3 : 150 µJ Fresnel quasi-phase matching: GaAs

21 Limitations of Fresnel QPM: influence of wafer roughness ZnSeGaAs 114 27452545 9898.699.499.6

22 shift  x N max  200 Limitation to Fresnel QPM: Goos-Hänchen shift Equivalent to walk off

23 Why bother? Semiconductor  (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions

24 Few lines of trivial theory Very predictive: - conversion yield proportional to sample length - independant on polarisation - resonant for - N/N eff easily measurable and compared with materials Non depletion approximation 3 processes independant with

25 RANDOM PHASE MATCHING Résonance pour taille de grain = longueur de cohérence 110 axis polycristalline Non linear diffusion in powder liquid and gas Phase mismatch (a) (b) Quasi-phase matching (c) (d) Baudrier, Haidar, Kupecek, Rosencher (Nature, 2004.)

26 Why bother? Semiconductor  (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions

27 Cr 2+ -doped ZnSe 0.510 µm VB CB High optical cross-section High solubility Large bandwith Good ONL materials Good lasing materials Self OPO S T 2.1  2.3 µm Cr 2 + 1.9 µm Pompe: 1.9 µm Laser: 2.3 µm DFG-OPO: 10 µm ZnSe:Cr X WiFi collapse !

28 Self-DFG Cr:ZnSe laser—set-up 50% single-pass absorption of the 1.9-µm pump energy 45° internal phase-matching angle (spp), 13 internal reflections Simple design: easy alignments, but high losses 1.9 µm pump 2.4 µm laser 9 µm DFG Cr:ZnSe single-crystal (uncoated) OPO Nd:YAG 1.06 µm 10 ns 30 Hz Tmax @ 1.9 µm R = 95% @ 2.4 µm Rmax @ 1.9 µm R = 95% @ 2.4 µm Tmax @ 9 µm

29 Laser (2.4 µm) 5% yield (/absorbed energy) Small coupler transmission to maximize the 2.4-µm intracavity electric field Self-DFG Cr:ZnSe laser – first results First demonstration of self-DFG in Cr:ZnSe laser 9-µm DFG preliminary results Note: thresholdless emission !

30 Small temporal overlap of pump and laser pulses Limited DFG efficiency Solution: longer pulse pump source Emitted DFG spectrum Broad line (no intracavity spectral filter) Fixed central wavelength Possible tuning schemes: pump or laser tuning + crystal rotation Self-DFG Cr:ZnSe laser – discussions

31 Why bother? Semiconductor  (2) properties Quasi-phase matching Total internal reflection phase matching Random phase matching Self-difference frequency generation Conclusions

32 Isotropic semiconductors are becoming viable solutions for non linear optical sources in the mid-infrared Fresnel phase matching allows very large tunability from the mid-IR to the terahertz Cr 2 + doped ZnSe allows thresholdless self DFG generation which greatly simplify source architectures: first realisation presented! Surface roughness principal limitations to Fresnel QPM Next step: electrical pumping of OPO ! Random phase matching works in poly ZnSe and allows very large samples


Download ppt "INNOVATIVE OPTICAL PARAMETRIC SOURCES USING ISOTROPIC SEMICONDUCTORS E. Rosencher, M. Baudrier, R. Haidar,A. Godard, M. Lefebvre and Ph. Kupecek* ONERA."

Similar presentations


Ads by Google