Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wolverine Pharmacometrics Corporation Within Subject Random Effect Transformations with NONMEM VI B. Frame 9/11/2009.

Similar presentations


Presentation on theme: "Wolverine Pharmacometrics Corporation Within Subject Random Effect Transformations with NONMEM VI B. Frame 9/11/2009."— Presentation transcript:

1 Wolverine Pharmacometrics Corporation Within Subject Random Effect Transformations with NONMEM VI B. Frame 9/11/2009

2 Wolverine Pharmacometrics Corporation Dynamic Transform Both Sides (TBS) What is TBS? Why bother with TBS? Brief History, Jacobians, and Likelihoods. Implementation and examples in NONMEM (V or VI)

3 Wolverine Pharmacometrics Corporation What is Transform Both Sides (TBS)? Consider our usual set up: Y ij = PRED( ,  ) ij +  ij Where i indexes subject and j indexes the response or prediction within subject i. The assumption here is that  ij ~ N(0,  2 ) In other words, the within subject variability does not depend on time, the PREDiction, or who the subject is (i).

4 Wolverine Pharmacometrics Corporation What is Transform Both Sides (TBS)? Consider an invertible transformation T, with a domain compatible with what is being transformed (response and prediction)... Then in general TBS is... T( Y ij )= T(PRED( ,  ) ij )+  ij Once again, the assumption here is that  ij ~ N(0,  2 )

5 Wolverine Pharmacometrics Corporation What is Transform Both Sides (TBS)? A simple example (no transformation parameter) ln( Y ij )= ln(PRED( ,  ) ij )+  ij ; Y ij >0, PRED( ,  ) ij >0 A dynamic example (with )

6 Wolverine Pharmacometrics Corporation Why Bother with TBS?

7 Wolverine Pharmacometrics Corporation Useful Resources http://www.stat.uconn.edu/~studentjournal/index_files/pengfi_s05.pdf Carroll Rupert (1988) Transformation and Weighting in Regression Estimating Data Transformations in Nonliner Mixed Effect Models; Oberg and Davidian; Biometrics 56,65-72;March 2000.

8 Wolverine Pharmacometrics Corporation Transformations, Likelihoods and Jacobians. Suppose we have a continuous random variable, X whose logarithm is distributed N( ,  2 ). Letting Y=ln(X) we know that the density for Y is...

9 Wolverine Pharmacometrics Corporation But What is the Distribution for X? To find f X (x) when X=g(Y), and g is monotone, we use the following change of variable formula...

10 Wolverine Pharmacometrics Corporation OK, so we turn the crank! X=g(Y) = exp(Y) Y=g -1 (X) = ln(X) d/dX(g -1 (X)) = 1/X

11 Wolverine Pharmacometrics Corporation Now lets Focus on the Dynamic Box-Cox TBS Our assumption is that... Let, so and

12 Wolverine Pharmacometrics Corporation Example A new ‘patch’ has been developed for bromodrosis. The T/2 is short and we have 7 steady state serum concentrations on each of 100 subjects. This may be the simplest possible PK example!

13 Wolverine Pharmacometrics Corporation Initial Model (CWS7.TXT) $PROBLEM $DATA NMDATA7.CSV $INPUT ID DV ; JUST ID AND SERUM CONCENTRATION! $PRED W=THETA(2) ;ADDITIVE SD CL=THETA(1)*EXP(ETA(1)) ;CL/F WITH BETWEEN SUBJECT VAR PRE=1/CL ;@ SS ASSUMING INPUT RATE = 1 4 ALL RES1=(DV-PRE)/W ;FORM A WITHIN SUBJECT RESIDUAL Y=PRE+EPS(1)*W $THETA (0,.1) ;CL/F (0,1) ;SD ADDITIVE $OMEGA.1 $SIGMA 1 FIX $EST MAXEVALS=9999 METH=1 PRINT=1 ; JUST BECAUSE! $COV PRINT=E $TABLE ID RES1 ONEHEADER NOAPPEND NOPRINT FILE=TWS7.TXT

14 Wolverine Pharmacometrics Corporation Graphics.

15 Wolverine Pharmacometrics Corporation CWS7L.TXT / CWS7L1.TXT $SUB CONTR=CONTR.TXT CCONTR=CCONTRA.TXT $PRED W=THETA(2) ;SD CL=THETA(1)*EXP(ETA(1)) ;CL/F PRE=1/CL ;@ SS ASSUMING INPUT RATE = 1 LAM=THETA(3) ;BOX COX LAMBDA PARAMETER PREL=(PRE**LAM-1)/LAM ;TRANSFORMED PREDICTION Y=PREL+EPS(1)*W ;ADDITIVE WITHIN SUBJECT ERROR IN ;THE TRANSFORMED SPACE RES1=((DV**LAM-1)/LAM-PREL)/W ;RESIDUAL IN THE T SPACE $THETA (0,.1) ;CL/F (0,1) ;SD ADDITIVE (0,1) ;BOX COX LAMBDA PARAMETER $OMEGA.1 ; THIS INIT WORKS FINE WITH NMV NM6?? $SIGMA 1 FIX $EST MAXEVALS=9999 METH=1 PRINT=1 $COV PRINT=E $TABLE ID RES1 ONEHEADER NOAPPEND NOPRINT FILE=TWS7L.TXT

16 Wolverine Pharmacometrics Corporation CCONTRA.TXT subroutine ccontr (icall,c1,c2,c3,ier1,ier2) parameter (lth=40,lvr=30,no=50) common /rocm0/ theta (lth) common /rocm4/ y double precision c1,c2,c3,theta,y,w,one,two dimension c2(*),c3(lvr,*) data one,two/1.,2./ if (icall.le.1) return w=y y=(y**theta(3)-one)/theta(3) call cels (c1,c2,c3,ier1,ier2) y=w c1=c1-two*(theta(3)-one)*log(y) return end

17 Wolverine Pharmacometrics Corporation Regression Engine Bake Off nmvnm6nm6 init2 SD in Transformed Space 1.92.1 0.240.270.26 CL/F0.01 $COVYesNoYes!  0.0041E-50.004

18 Wolverine Pharmacometrics Corporation Last Slide


Download ppt "Wolverine Pharmacometrics Corporation Within Subject Random Effect Transformations with NONMEM VI B. Frame 9/11/2009."

Similar presentations


Ads by Google