Download presentation
Presentation is loading. Please wait.
Published byMelanie Jefferson Modified over 9 years ago
1
by Alain L. Kornhauser, PhD Professor, Operations Research & Financial Engineering Director, Program in Transportation Faculty Chair, PAVE (Princeton Autonomous Vehicle Engineering) Princeton University Presented at PAVE – Summer Workshop Princeton, NJ August 4-6, 2014 Busses & autonomousTaxis
2
Use Autonomous Collision Avoidance Technology to Address a BIG CURRENT Transit Problem
3
Good News! Travel by Bus is getting safer!
4
Good News! Injuries have been trending down!
5
Terrible News! Claims are going through the roof!
6
Casualty and Liability Claims are a Huge Drain on the Industry For the 10 year period 2002-2011, more than $4.1 Billion was spent on casualty and liability claims For many self-insured transit agencies these expenses are direct “out-of-pocket”
7
2011 Nationwide Bus Casualty and Liability Expense Source FTA NTD Casualty and Liability Amount Vehicle- related $483,076,010. Total Buses 59,871 Sub-Total Casualty and Liability Amount Per Bus $8,069/Bus/Year
8
The Cost of Installing an Active Collision Avoidance System on a Bus Could be Recovered in as Little as One Year Through Reductions in Casualty and Liability Claims
9
Why New Jersey? Observation: In 2 Years, NJ Transit will initiate a new Bus Replacement Cycle (That will extend for about 15 years) Action Item: – Ensure that the Procurement Specifications include “Level 2” SmartDriving Technologies
10
Near-term Opportunity for a Substantive Extension of Autonomous Transit Specific: General Mobility for Fort Monmouth Redevelopment – Currently: Decommissioned Ft. Monmouth is vacant. Ft. Monmouth Economic Revitalization Authority (FMERA) is redeveloping the 3 sq. mile “city”FMERAredeveloping Focus is on attracting high-tech industry The “Fort” needs a mobility system. FMERA is receptive to incorporating an innovative mobility system Because it is being redeveloped as a “new town” it can accommodate itself to be an ideal site for testing more advanced driverless systems.
11
The Initial Project: Princeton University (with American Public Transit Association (APTA), Greater Cleveland Transit, and insurance pools from WA, CA, OH & VA) Focused on Research, Certification and Commercialization of SmartDriving Technology to Buses Pending $5M Grant from Federal Transit Administration
12
Proposal Done: December 2, 2013: For next 6 months: Silence from FTA Proposal Done: December 2, 2013: For next 6 months: Silence from FTA In those 6 months approximately: 39 Fatalities 7,200 Injuries $180M Claims “Level 2 Collision Avoidance Technology” Could cut those numbers in half Why the delay in spending $5M to get the process started ???????
13
Thank You alaink@princeton.edu www.SmartDrivingCar.com Discussion!
14
Assuming PLANNERS continue to PLAN as they do now. – How will people “get around”? Assuming this new way of “getting around” offers different opportunities and constraints for PLANNERS to improve “Quality of Life”. – How will Zoning/Land-Use Change? – How will people “get around”? What about Level 4 Implications on Energy, Congestion, Environment?
15
Land-Use hasn’t changed – Trip ends don’t change! Assume Trip Distribution Doesn’t Change – Then it is only Mode Split. – Do I: Walk? Ride alone? Ride with someone? All about Ride-sharing What about Level 4 Implications on Energy, Congestion, Environment? Assuming Planners Don’t Change
16
“AVO < 1” RideSharing – “Daddy, take me to school.” (Lots today) “Organized” RideSharing – Corporate commuter carpools (Very few today) “Tag-along” RideSharing – One person decides: “I’m going to the store. Wanna come along”. Other: “Sure”. (Lots today) There exists a personal correlation between ride-sharers “Casual” RideSharing – Chance meeting of a strange that wants to go in my direction at the time I want to go “Slug”, “Hitch hiker” Kinds of RideSharing
17
“AVO < 1” RideSharing – Eliminate the “Empty Back-haul”; AVO Plus “Organized” RideSharing – Diverted to aTaxis “Tag-along” RideSharing – Only Primary trip maker modeled, “Tag-alongs” are assumed same after as before. “Casual” RideSharing – This is the opportunity of aTaxis – How much spatial and temporal aggregation is required to create significant casual ride-sharing opportunities. aTaxis and RideSharing
18
By walking to a station/aTaxiStand – At what point does a walk distance makes the aTaxi trip unattractive relative to one’s personal car? – ¼ mile ( 5 minute) max Like using an Elevator! Spatial Aggregation Elevator
19
No Change in Today’s Walking, Bicycling and Rail trips – Today’s Automobile trips become aTaxi or aTaxi+Rail trips with hopefully LOTS of Ride-sharing opportunities What about Level 4 Implications on Energy, Congestion, Environment? Assuming Planners Don’t Change
20
Pixelation of New Jersey NJ State Grid Zoomed-In Grid of Mercer
21
Pixelating the State with half-mile Pixels Pixelating the State with half-mile Pixels xPixel = floor{108.907 * (longitude + 75.6)} yPixel = floor{138.2 * (latitude – 38.9)) xPixel = floor{108.907 * (longitude + 75.6)} yPixel = floor{138.2 * (latitude – 38.9))
22
a PersonTrip {oLat, oLon, oTime (Hr:Min:Sec),dLat, dLon, Exected: dTime} a PersonTrip {oLat, oLon, oTime (Hr:Min:Sec),dLat, dLon, Exected: dTime} O O D P1P1 An aTaxiTrip {oYpixel, oXpixel, oTime (Hr:Min:Sec), } An aTaxiTrip {oYpixel, oXpixel, oTime (Hr:Min:Sec), } An aTaxiTrip {oYpixel, oXpixel, oTime (Hr:Min:Sec),dYpixel, dXpixel, Exected: dTime} An aTaxiTrip {oYpixel, oXpixel, oTime (Hr:Min:Sec),dYpixel, dXpixel, Exected: dTime}
23
P1P1 O Common Destination (CD) CD=1p: Pixel -> Pixel (p->p) Ride-sharing Common Destination (CD) CD=1p: Pixel -> Pixel (p->p) Ride-sharing TripMiles = L TripMiles = 2L TripMiles = 3L
24
P1P1 O PersonMiles = 3L aTaxiMiles = L AVO = PersonMiles/aTaxiMiles = 3 PersonMiles = 3L aTaxiMiles = L AVO = PersonMiles/aTaxiMiles = 3
25
Elevator Analogy of an aTaxi Stand Temporal Aggregation Departure Delay: DD = 300 Seconds Elevator Analogy of an aTaxi Stand Temporal Aggregation Departure Delay: DD = 300 Seconds Kornhauser Obrien Johnson 40 sec Henderson Lin 1:34 Popkin 3:47
26
Samuels 4:50 Henderson Lin Young 0:34 Popkin 2:17 Elevator Analogy of an aTaxi Stand 60 seconds later Elevator Analogy of an aTaxi Stand 60 seconds later Christie Maddow 4:12
27
By walking to a station/aTaxiStand – A what point does a walk distance makes the aTaxi trip unattractive relative to one’s personal car? – ¼ mile ( 5 minute) max By using the rail system for some trips – Trips with at least one trip-end within a short walk to a train station. – Trips to/from NYC or PHL Spatial Aggregation
28
D a PersonTrip from NYC (or PHL or any Pixel containing a Train station) a PersonTrip from NYC (or PHL or any Pixel containing a Train station) NYC O Princeton Train Station NJ Transit Rail Line to NYC, next Departure aTaxiTrip An aTaxiTrip {oYpixel, oXpixel, TrainArrivalTime, dYpixel, dXpixel, Exected: dTime} An aTaxiTrip {oYpixel, oXpixel, TrainArrivalTime, dYpixel, dXpixel, Exected: dTime}
29
By walking to a station/aTaxiStand – A what point does a walk distance makes the aTaxi trip unattractive relative to one’s personal car? – ¼ mile ( 5 minute) max By using the rail system for some trips – Trips with at least one trip end within a short walk to a train station. – Trips to/from NYC or PHL By sharing rides with others that are basically going in my direction – No trip has more than 20% circuity added to its trip time. Spatial Aggregation
30
P1P1 P2P2 O CD= 3p: Pixel ->3Pixels Ride-sharing
31
P1P1 P5P5 O P3P3
32
– I just need a Trip File for some Local {Precise O, Precise oTime, Precise D} For All Trips! – “Precise” Location: Within a Very Short Walk ~ Parking Space -> Front Door (Properly account for accessibility differences: conventionalAuto v aTaxi) – “Precise” oTime : “to the second” (Properly account for how long one must wait around to ride with someone else) What about Level 4 Implications on Energy, Congestion, Environment?
33
Motivation – Publicly available TRAVEL Data do NOT contain: – Spatial precision Where are people leaving from? Where are people going? – Temporal precision At what time are they travelling? Trip Synthesizer (Activity-Based) Project Overview
35
Synthesize from available data: “every” NJ Traveler on a typical day NJ_Resident file – Containing appropriate demographic and spatial characteristics that reflect trip making “every” trip that each Traveler is likely to make on a typical day. NJ_PersonTrip file – Containing appropriate spatial and temporal characteristics for each trip
36
Creating the NJ_Resident file for “every” NJ Traveler on a typical day NJ_Resident file Start with Publically available data:
37
Bergen County @ Block Level CountyPopulationCensus Blocks Median Pop/ Block Average Pop/Block BER 907,128 11,1165881.6
38
Assigning a Daily Activity (Trip) Tour to Each Person
39
NJ_PersonTrip file 9,054,849 records – One for each person in NJ_Resident file Specifying 32,862,668 Daily Person Trips – Each characterized by a precise {oLat, oLon, oTime, dLat, dLon, Est_dTime} All Trips Home County TripsTripMilesAverageTM #Miles ATL 936,585 27,723,93129.6 BER 3,075,434 40,006,14513.0 BUC 250,006 9,725,08038.9 BUR 1,525,713 37,274,68224.4 CAM 1,746,906 27,523,67915.8 CAP 333,690 11,026,87433.0 CUM 532,897 18,766,98635.2 ESS 2,663,517 29,307,43911.0 GLO 980,302 23,790,79824.3 HUD 2,153,677 18,580,5858.6 HUN 437,598 13,044,44029.8 MER 1,248,183 22,410,29718.0 MID 2,753,142 47,579,55117.3 MON 2,144,477 50,862,65123.7 MOR 1,677,161 33,746,36020.1 NOR 12,534 900,43471.8 NYC 215,915 4,131,76419.1 OCE 1,964,014 63,174,46632.2 PAS 1,704,184 22,641,20113.3 PHL 46,468 1,367,40529.4 ROC 81,740 2,163,31126.5 SAL 225,725 8,239,59336.5 SOM 1,099,927 21,799,64719.8 SOU 34,493 2,468,01671.6 SUS 508,674 16,572,79232.6 UNI 1,824,093 21,860,03112.0 WAR 371,169 13,012,48935.1 WES 16,304 477,95029.3 Total 32,862,668 590,178,59719.3
40
NJ_PersonTrip file
42
c http://orfe.princeton.edu/~alaink/NJ_aTaxiOrf467F13/Orf467F13_NJ_TripFiles/MID-1_aTaxiDepAnalysis_300,SP.xlsx
43
Results
45
What about the whole country?
46
Public Schools in the US
47
Nation-Wide Businesses RankState Sales VolumeNo. Businesses 1California$1,8891,579,342 2Texas$2,115999,331 3Florida$1,702895,586 4New York$1,822837,773 5Pennsylvania$2,134550,678 9New Jersey$1,919428,596 45Washington DC$1,31749,488 47Rhode Island$1,81446,503 48North Dakota$1,97844,518 49Delaware$2,10841,296 50Vermont$1,55439,230 51Wyoming$1,67935,881 13.6 Million Businesses {Name, address, Sales, #employees}
48
US_PersonTrip file will have.. 308,745,538 records – One for each person in US_Resident file Specifying 1,009,332,835 Daily Person Trips – Each characterized by a precise {oLat, oLon, oTime, dLat, dLon, Est_dTime} Will Perform Nationwide aTaxi AVO analysis Results ????
53
Trip Files are Available If You want to Play
54
Thank You alaink@princeton.edu www.SmartDrivingCar.com Discussion!
56
Conventional Cars Drive Urban/City Planning
57
Current State of Public Transport… Not Good!: – Serves about 2% of all motorized trips – Passenger Miles (2007)*: 2.640x10 12 Passenger Car; 1.927x10 12 SUV/Light Truck; 0.052x10 12 All Transit; 0.006x10 12 Amtrak – Does a little better in “peak hour” and NYC 5% commuter trips NYC Met area contributes about half of all transit trips – Financially it’s a “train wreck” http://www.bts.gov/publications/national_transportation_statistics/2010/pdf/entire.pdfhttp://www.bts.gov/publications/national_transportation_statistics/2010/pdf/entire.pdf, Table1-37
58
Transit’s Fundamental Problem… Transit is non-competitive to serve most travel demand – Travel Demand (desire to go from A to B in a time window A & B are walk accessible areas, typically: – Very large number of very geographically diffused {A,B} pairs is diffused throughout the day with only modest concentration in morning and afternoon peak hours The conventionalAutomobile at “all” times Serves… – Essentially all {A,B} pairs demand-responsively within a reasonable Transit at “few” times during the day Serves… – a modest number of A & B on scheduled fixed routes – But very few {A,B} pairs within a reasonable Transit’s need for an expensive driver Forces it to only offer infrequent scheduled fixed route service between few {A,B} pairs – But… Transit can become demand-responsive serving many {A,B} if the driver is made cheap and it utilizes existing roadway infrastructure. 0.25 mi.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.