Download presentation
Presentation is loading. Please wait.
Published byLindsey Coleen McKenzie Modified over 9 years ago
1
Experiments with magnetic bottles Melanie Mucke Department of Physics and Astronomy Uppsala University, Sweden (melanie.mucke@physics.uu.se)
2
outline part 1: magnetic bottle spectrometer working principle layout features part 2: synchrotron experiments coincidences ICD in water clusters part 3: FEL experiments covariance technique with neon double core holes in hydrocarbons pump-probe on thymine
3
part 1: magnetic bottle
4
Kruit and Read, J. Phys. E 16, 313 (1983): cylindrical poles of electromagnet around interaction region, drift tube with coild around for homogeneous guiding field, detector: MCP + phosphor screen magnetic bottle – the beginning e-e- e-e- strong magnetic field B i weak magnetic field B f ii v ff v z
5
magnetic bottle - principle angular frequency of motion orbit (cyclotron radius) angular momentum of circular motion Lorentz force BiBi BfBf ii v ff v
6
magnetic bottle - principle BiBi BfBf ii v ff v adiabatic transition e.g. B i = 1 T, B f = 1 mT f,max = 1.8°, M = 31.6 angular frequency of motion orbit (cyclotron radius) angular momentum of circular motion Lorentz force
7
permanent magnet inhomogeneous, strong field (0,4 T) solenoid homogeneous, weak field (0,5 mT) e-e- e-e- magnetic bottle – as used replace electromagnet by permanent magnet increase solid angle from 2 to 4
8
time-of-flight spectrometer – cover full kinetic energy range high transmission over large kinetic energy range high detection efficiency capable of multi particle detection ideally suited to investigate correlation between electrons magnetic bottle – special features
9
time of flight spectra need pulsed light source need start signal need to calibrate part 2: experiments at BESSY h = IR … 10 kV one electron bunch approx. 20 mA d = 76 m BESSY II rep. rate 1.25 MHz = 800.5 ns revolution time
10
synchrotron radiation magnetic tip mesh cluster beam flight tube (0.6 m) with homogeneous magnetic field detector flange with MCP stack & phosphor screen joint project with AG Becker, FHI Berlin experimental setup
11
B. Hartke, Angew. Chem. Int. Ed. 41, 1468 (2002).... between molecule and liquid water clusters
12
monomer energies for water follow I. Müller and L. Cederbaum, JCP 125, 204305 (2006). inner valence outer valence core level continuum binding energy (eV) 12,85 - 19,11 33,37 Intermolecular Coulombic Decay
13
monomerdimer 12,85 - 19,11 33,37 11,91 - 19,74 32,59 - 34,10 inner valence outer valence core level continuum energies for water follow I. Müller and L. Cederbaum, JCP 125, 204305 (2006). binding energy (eV) Intermolecular Coulombic Decay
14
monomerdimer 12,85 - 19,11 33,37 11,91 - 19,74 32,59 - 34,10 double ionisation potential „one-site“ 38,63 eV double ionisation potential „two-site“ 27,97 eV inner valence outer valence core level continuum energies for water follow I. Müller and L. Cederbaum, JCP 125, 204305 (2006). binding energy (eV) Intermolecular Coulombic Decay
15
I. Müller and L. S. Cederbaum, JCP 125, 204305 (2006). energy spectrum of the ICD-electron: calculation for water tetramer ICD in water clusters
16
S. Barth et al., JPC A 113, 13519 (2009). cluster contribution outer valence inner valence photoelectron spectrum of water
17
outer valence inner valence This state can decay via ICD. + ICD electrons S. Barth et al., JPC A 113, 13519 (2009). cluster contribution photoelectron spectrum of water
18
investigate coincident electron pairs electrons undistinguishable sort by flighttime slow fast flight time electron 2 flight time electron 1 electron-electron coincidence measurement
19
neon tof-map
20
flight time electron 2 flight time electron 1 flight time electron 2 time-to-energy conversion
21
tof map energy map flight time e 2 flight time e 1 kinetic energy e 2 kinetic energy e 1 h = 45 eV coincidence maps of water
22
expected range for water ICD energy spectrum shows ICD qualitative agreement with theoretical spectrum 0 h = 45 eV = 40 ICD spectrum
23
energy spectrum of the primary electrons vs. kinetic energy 0 spectrum of the intermediate state h = 45 eV = 40
24
coincident intensity vs. binding energy of the final state DIP H 2 O monomer 0 spectrum of the final state h = 45 eV = 40
25
ICD feature shifts with photon energy energy of the ICD electron follows the theoretical predictions M. Mucke et al., Nature Phys. 6, 143 (2010) variation of the excitation energy
26
h = 60 eV = 200 monomer cluster no ICD in the monomer M. Mucke et al., Nature Phys. 6, 143 (2010)
27
LCLS start injector Experiment and UV laser ~1500 m part 3: experiments at the LCLS
28
large collaborations at LCLS Uppsala University M. Mucke V. Zhaunerchyk M. Kaminska M.N. Piancastelli J.H.D. Eland (also Oxford University) R. Feifel Stockholm University P. Salén P. v.d.Meulen P. Linusson R.D. Thomas M. Larsson Imperial College London R.J. Squibb (now Uppsala University) M. Siano L.J. Frasinski ELETTRA Trieste R. Richter K.C. Prince SLAC R. Coffee M. Glownia J. Cryan M. Messerschmidt S. Schorb C. Bostedt J. Bozek Michigan University T. Osipov L. Fang B. Murphy N. Berrah Hiroshima University O. Takahashi S. Wada Tohoku University, Sendai K. Motomura S. Mondal K. Ueda MPI, Heidelberg L. Foucar J. Ullrich
29
a new bottle...
30
experiments at the LCLS AMO hutch High Field Physics chamber Aug/Sep 2011 FEL beam spectrometer axis sample beam rep. rate 120 Hz
31
magnet solenoid FEL sample MCP e-e- e-e- pulse parameters trigger from FEL digitiser online display experimental set-up
32
covariance analysis difference in correlated and uncorrelated products of electron signals X and Y at two kinetic energies: C(X,Y) = - jitter corretion (photon energy fluctuation) partial covariance corrects for intensity fluctuations of FEL: C p (X,Y;I) = C(X,Y) - C(X,I)C(I,Y)/C(I,I) conditional covariance: groupwise analysis of data from shots of similar intensity L.F. Frasinski et al., J. El. Spec. Rel. Phenom. 79, 367 (1996). V. Zhaunerchuk et al., Phys. Rev. A 89, 053418 (2014). L.F. Frasinski et al., Science 246, 1029 (1989).
33
Double Core Holes at the same atom ss DCH at different atoms ts DCH creation of two core holes in a molecule by photon impact high sensitivity to chemical environment increased orbital relaxation effect from L.S. Cederbaum et al., Chem. Phys. 85, 6513 (1986).
34
recent studies on DCHs J.H.D. Eland et al., Phys. Rev. Lett. 105, 213005 (2010), P. Lablanquie et al., Phys. Rev. Lett. 106, 063003 (2011), P. Linusson et al., Phys. Rev. A 83, 022506 (2011), P. Lablanquie et al., Phys. Rev. Lett. 107, 193004 (2011), M. Nakano et al., Phys. Rev. Lett. 110, 163001 (2013), L. Hedin et al., J. Chem. Phys., submitted (2013). synchrotron radiation + multi-particle coincidence CH 4 NH 3 C 1s -2 N 1s -2 FEL + single-electron detection L. Fang et al., Phys. Rev. Lett. 105, 083005 (2010), J. Cryan et al., Phys. Rev. Lett 105, 083004 (2010), N. Berrah et al., PNAS 108, 16912 (2011), P. Salén et al., Phys. Rev. Lett. 108, 153003 (2012), M. Larsson et al., J. Phys. B 46, 164034 (2013).
35
study of DCHs at FELs use efficient electron spectrometer, employ covariance technique make up for low repetition rate of FEL pulses by allowing for multiple ionisation events per light pulse using a spectrometer of high detection efficiency being able to handle multiple electrons per ionisation event
36
study of DCHs at FELs ”core hole clock”: FEL pulse length vs. core hole lifetime get information on ionisation dynamics use efficient electron spectrometer, employ covariance technique make up for low repetition rate of FEL pulses by allowing for multiple ionisation events per light pulse using a spectrometer of high detection efficiency being able to handle multiple electrons per ionisation event
37
neon: ionisation processes photon energy 1062 eV
38
neon: covariance map core-region FEL parameters 40 pC charge mode 0.35 mJ pulse energy ≤ 10 fs pulse length 1062 eV photon energy
39
neon: covariance map correction disciminated data jitter corrected raw data V. Zhaunerchyk, M. Mucke,…, and R. Feifel, J. Phys. B 46, 164034 (2013). Fourier deconvolution
40
neon: coincidence vs. covariance coincidence V. Zhaunerchyk, M. Mucke, et al., J. Phys. B 46, 164034 (2013). covariance
41
neon: covariance map core-region FEL parameters 40 pC charge mode 0.35 mJ pulse energy ≤ 10 fs pulse length 1062 eV photon energy
42
neon: covariance map core-region 1 3 24 6 autocorrelation line 5 FEL parameters 40 pC charge mode 0.35 mJ pulse energy ≤ 10 fs pulse length 1062 eV photon energy 1 PAP 2 PP or PAPAP 3 PAP V P, PP V AP or PAP sat 4 PAPAP 5 D KV 6 D KV AP
43
neon: covariance maps 1 3 24 6 autocorrelation line 5 7 8 7 P V P 8 PAP V P or PP V AP L.J. Frasinski et al., Phys. Rev. Lett. 111, 073002 (2013), V. Zhaunerchyk et al., J. Phys. B 46, 164034 (2013). first time distinguish PP V from P V P 1 3 24 6 autocorrelation line 5 1 PAP 2 PP or PAPAP 3 PAP V P, PP V AP or PAP sat 4 PAPAP 5 D KV 6 D KV AP core-core region core-valence region
44
Double Core Holes in hydrocarbons These slides have been deleted since the results are not yet published. If you want information on the outcomes of our investigation of double core hole states in hydrocarbons (C2H2 and C2H6) at the LCLS, please contact me (melanie.mucke@physics.uu.se).
45
summary on Double Core Holes 2dim covariance well suited for analysis of data from low repetition-rate light sources (handling of multiple ionisation events per light shot possible) identification of new few-photon processes by electron kinetic energies and comparison of intensity dependency of electron-pair features clear signatures for DCHs
46
tt ultrafast processes in thymine... investigated by pump-probe spectroscopy UV pump + XFEL probe magnetic bottle Auger difference spectra
47
Nora Berrah, WMU Christoph Bostedt, LCLS SLAC John Bozek, LCLS SLAC Phil Bucksbaum, PULSE SLAC Ryan Coffee, LCLS James Cryan, PULSE SLAC Li Fang, WMU Joe Farrell, PULSE SLAC Raimund Feifel, Uppsala University Kelly Gaffney, PULSE SLAC Mike Glownia, PULSE SLAC Markus Guehr, PULSE SLAC, Spokesperson Todd Martinez, PULSE SLAC, Brian McFarland, PULSE SLAC Shungo Miyabe, PULSE SLAC Melanie Mucke, Uppsala University Brendan Murphy, WMU Adi Natan, PULSE SLAC Timur Osipov, WMU Vladimir Petrovic, PULSE SLAC Sebastian Schorb, LCLS SLAC Thomas Schultz, MBI, Berlin Limor Spector, PULSE SLAC Francesco Tarantelli, Univ. Perugia Ian Tenney, PULSE SLAC Song Wang, PULSE SLAC Bill White, LCLS SLAC James White, PULSE SLAC Early Career Grant Reference: McFarland et al. Nature Comm. 5, 4235 (2014) thymine collaboration
48
* n*n* Reaction coordinate UV pump Ground state Potential energy n*n* n GS * 4.5 eV Barrier? Asturiol et al., J. Phys. Chem. A,113, 10211 (2009) Hudock et al., J. Phys. Chem. A,111, 85 (2007) competing processes
49
* n*n* Reaction coordinate Potential energy CI Neutral states UV pump Core ionized states Dicationic states SXR probe Auger decay E kin Barrier? Ground state GS n IP Oxygen 1s GS * UV pump X-ray probe Auger decay UV pump SXR probe Delay Electr. Relax. E kin n*n* Electr. Relax. O O pump-probe scheme
50
UV Pump Off UV Pump On Auger Electrons Difference signal: UV On-UV Off Auger difference spectra UV pump: 266 nm XFEL probe: 570 eV retardation 470 V
51
kinetic energy [eV] Auger difference spectra UV Pump Off UV Pump On Auger Electrons Difference signal: UV On-UV Off
52
I II III kinetic energy [eV] delay [ps] min III delay [ps] McFarland et al, Nature Comm. 5, 4235 (2014) I III II blue-shift of Auger lines
53
I II III kinetic energy [eV] delay [ps] min III delay [ps] * n*n* Reaction coordinate UV pump Ground state Potential energy McFarland et al, Nature Comm. 5, 4235 (2014) I III II min blue-shift of Auger lines
54
54 I II III kinetic energy [eV] delay [ps] III delay [ps] * n*n* Reaction coordinate UV pump Ground state Potential energy min McFarland et al, Nature Comm. 5, 4235 (2014) I III II no barrier observed
55
the end magnetic bottle spectrometer – versatile tool for detection of electrons, especially suitable for correlation studies
56
neon: 3dim covariance maps L.J. Frasinski, V. Zhaunerchyk, M. Mucke,…, and R. Feifel, Phys. Rev. Lett. 111, 073002 (2013).
57
neon: relative ionisation yields power law dependence of few photon processes L.J. Frasinski, V. Zhaunerchyk, M. Mucke,…, and R. Feifel, Phys. Rev. Lett. 111, 073002 (2013). dynamics of photoionisation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.