Download presentation
Presentation is loading. Please wait.
Published byRudolf Dean Modified over 9 years ago
1
Light, Surface and Feature in Color Images Lilong Shi Postdoc at Caltech Computational Vision Lab, Simon Fraser University
2
Topics Color Constancy Surface Reflectance Model Feature Analysis
3
Color Formation reflectance spectral Illum. power distribution camera response sensor sensitivity
4
Color Constancy
5
Automatic White Balance AWB Canonical
6
Color Constancy Methods Retinex Theory (McCann64) MaxRGB/White-Patch (Land77): max(R) Gray-World (Buchsbaum80): mean(R) Shades-of-Gray (Finlayson04): [mean(R p )] 1/p Gray-Edge Hypothesis (Weijer07): mean(edge(R)) Non-Negative Matrix Factorization (Shi07) =
7
Color Constancy Methods Gamut Mapping (Forsyth90) Color by Correlation (Finlayson01) Neural Network (Cardei02) Support Vector Regression (Xiong06) Thin Plate Spline (Shi11)
8
Color Constancy Methods Classification-based (Bianco09) Scene-based (Gijsenij11)
9
Color Constancy Evaluation MethodInputTrainspeedPara. Relative Performance Assumptions Max-RGB imgnovery fastnonepoorwhite surface Gray-World imgnovery fastnonepooraverage gray Shades-of-Gray imgnomoderateonemoderate/goodaverage gray Edge-based Hyp. imgnofastnonemoderateaverage gray Color-by-Corre. histyesfasta fewmoderatecandidate illums Neural-Network histyesmoderatesomegoodnone Sup. Vector Reg. histyesdep. trainsomemoderate/goodnone Thin-Plate-Spline thumyesdep. traina fewgoodnone
10
Blackbody Radiator Lights Tungsten lamps, sunrise/sunset, sky light Planckian locus Narrowband sensors
11
Surface Reflectance Model LIS Coordinate (Finlayson 01)
12
Achromatic Surface Detection in LIS Gray Surface
13
Skin Color Model Skin: melanin + hemoglobin Skin Reflectance (Hiraoka et al 93) Under blackbody illumination pigment density absorbance length in epidermis/dermis absorbance of other material
14
Skin Color Locus Linear model m is melanin basis, h is hemoglobin basis, is blackbody radiator basis, c is a constant vector
15
Skin Tone Correction Even simpler model: Tone correction Preserve melanin 16 different illum + camera calibrations
16
Features Textures, edges, corner, blobs, etc.. Colors Integrated by Quaternion
17
Quaternion Real, complex, quaternion (q = a + b i + c j + d k) Non-commutative (pq ≠ qp) Convolution, Correlation, Fourier, Wavelet, etc SVD, EVD, PCA
18
Texture Feature Extraction QPCA Image-specific quaternion texture basis Sampled sub-windows
19
Texture Feature Extraction Single quaternion A texture patch 1 st QPCA Basis T
20
Texture Feature 1 st Feature
21
Segmentation Quaternion Hoang(05)
22
Segmentation
23
Color Curvature
24
Iso-luminance Color -> Gray Cancellation in combining +/- derivatives
25
Hessian Descriptor 2 nd order local shape Principle Curvature eigenvectors: (e 1, e 2 ) eigenvalues: | 1 |<| 2 | e1e1 e2e2 1 λ2λ2 e1e1 e2e2 λ2λ2 1
26
Curvature Tubular, vessel-like structures [Frangi98] With eigen-values blobness: backgroundness: vesselness: R and S Gray image, 2 λ’s; RGB image, 6λ’s
27
Color Curvature Quaternion-valued Hessian QSVD on H 2 real singular values
28
Curvature Detection Frangi Quaternion
29
Future Works Content-based color constancy Color blob/points detection Possibilities …
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.