Presentation is loading. Please wait.

Presentation is loading. Please wait.

Light, Surface and Feature in Color Images Lilong Shi Postdoc at Caltech Computational Vision Lab, Simon Fraser University.

Similar presentations


Presentation on theme: "Light, Surface and Feature in Color Images Lilong Shi Postdoc at Caltech Computational Vision Lab, Simon Fraser University."— Presentation transcript:

1 Light, Surface and Feature in Color Images Lilong Shi Postdoc at Caltech Computational Vision Lab, Simon Fraser University

2 Topics  Color Constancy  Surface Reflectance Model  Feature Analysis

3 Color Formation reflectance spectral Illum. power distribution camera response sensor sensitivity

4 Color Constancy

5 Automatic White Balance AWB Canonical

6 Color Constancy Methods  Retinex Theory (McCann64)  MaxRGB/White-Patch (Land77): max(R)  Gray-World (Buchsbaum80): mean(R)  Shades-of-Gray (Finlayson04): [mean(R p )] 1/p  Gray-Edge Hypothesis (Weijer07): mean(edge(R))  Non-Negative Matrix Factorization (Shi07) =

7 Color Constancy Methods  Gamut Mapping (Forsyth90)  Color by Correlation (Finlayson01)  Neural Network (Cardei02)  Support Vector Regression (Xiong06)  Thin Plate Spline (Shi11)

8 Color Constancy Methods  Classification-based (Bianco09)  Scene-based (Gijsenij11)

9 Color Constancy Evaluation MethodInputTrainspeedPara. Relative Performance Assumptions Max-RGB imgnovery fastnonepoorwhite surface Gray-World imgnovery fastnonepooraverage gray Shades-of-Gray imgnomoderateonemoderate/goodaverage gray Edge-based Hyp. imgnofastnonemoderateaverage gray Color-by-Corre. histyesfasta fewmoderatecandidate illums Neural-Network histyesmoderatesomegoodnone Sup. Vector Reg. histyesdep. trainsomemoderate/goodnone Thin-Plate-Spline thumyesdep. traina fewgoodnone

10 Blackbody Radiator Lights  Tungsten lamps, sunrise/sunset, sky light  Planckian locus  Narrowband sensors

11 Surface Reflectance Model  LIS Coordinate (Finlayson 01)

12 Achromatic Surface  Detection in LIS Gray Surface

13 Skin Color Model  Skin: melanin + hemoglobin  Skin Reflectance (Hiraoka et al 93)  Under blackbody illumination pigment density absorbance length in epidermis/dermis absorbance of other material

14 Skin Color Locus  Linear model   m is melanin basis,   h is hemoglobin basis,   is blackbody radiator basis,  c is a constant vector

15 Skin Tone Correction  Even simpler model: Tone correction Preserve melanin 16 different illum + camera calibrations

16 Features  Textures, edges, corner, blobs, etc..  Colors  Integrated by Quaternion

17 Quaternion  Real, complex, quaternion (q = a + b  i + c  j + d  k)  Non-commutative (pq ≠ qp)  Convolution, Correlation, Fourier, Wavelet, etc  SVD, EVD, PCA

18 Texture Feature Extraction QPCA Image-specific quaternion texture basis Sampled sub-windows

19 Texture Feature Extraction Single quaternion A texture patch 1 st QPCA Basis T 

20 Texture Feature  1 st Feature

21 Segmentation Quaternion Hoang(05)

22 Segmentation

23 Color Curvature

24 Iso-luminance  Color -> Gray  Cancellation in combining +/- derivatives

25 Hessian Descriptor  2 nd order local shape  Principle Curvature eigenvectors: (e 1, e 2 ) eigenvalues: | 1 |<| 2 | e1e1 e2e2 1 λ2λ2 e1e1 e2e2 λ2λ2 1

26 Curvature  Tubular, vessel-like structures [Frangi98]  With eigen-values  blobness:  backgroundness:  vesselness:  R and  S  Gray image, 2 λ’s; RGB image, 6λ’s

27 Color Curvature  Quaternion-valued Hessian  QSVD on H  2 real singular values

28 Curvature Detection Frangi Quaternion

29 Future Works  Content-based color constancy  Color blob/points detection  Possibilities …


Download ppt "Light, Surface and Feature in Color Images Lilong Shi Postdoc at Caltech Computational Vision Lab, Simon Fraser University."

Similar presentations


Ads by Google