Download presentation
Presentation is loading. Please wait.
Published byJane Carr Modified over 9 years ago
1
Freeze-out information and light nucleus production KAIJIA SUN( 孙开佳 ) 2013 08 09 in relativistic heavy-ion collisions (INPAC and Department of Physics and Astronomy, Shanghai Jiao Tong University. sunkaijia@sjtu.edu.cn) Advisor: Lie-wen Chen ( 陈列文 )
2
1. Retière-Lisa model Transverse momentum distribution, Freeze-out information 2. Coalescence model Wigner function : a semi-classical method to calculate coalescence probability of multiple particles 3. Yields of Light nucleus, Hypertriton, and di-Lambda 4. Summary and outlook outline
3
Local Thermal Equilibrium Longitudinal boost invariance Freeze-out in momentum space x y z Basic hypothesis J.D.Bjorken, Phys.Rev.D 27, 140(1983)
4
Retière-Lisa Model Fabrice Retière et.al, PRC70, 044907(2004) One particle invariant distribution Covariant distribution function Parameterization of transverse flow Fred Cooper and Graham Frye, Phys. Rev D. 10, 186 (1974)
5
Freeze-out Information Spectrum of proton, centrality 0~5% The PHENIX Collaboration, Phys. Rev.C. 69, 034909 (2004) In preparation Sun and Chen
6
Dover/Heinz/Schnedermann/Zimanyi, PRC44, 1636 (1991) The structure of freeze-out space-time Neglecting binding energy coalescence probability : Wigner function Statistical factor Invariant phase factor Phase space distribution Wigner function Covariant Coalescence model
7
Wigner phase-space density for t/ 3 He t/ 3 He Wigner phase-space density and root-mean-square radius: Assume nucleon wave function in t/ 3 He can be described by the harmonic oscillator wave function, i.e., RMS radius is the only parameter determining wigner function !
8
Light nucleus spectrum particlesdN/dy proton15.9 deuteron0.086 He31.3E-4 4.21E-5 He41.62E-7 1.21E-8 5.72E-11 (The PHENIX Collaboration), Phys. Rev. C. 69, 034909 (2004) (The STAR Collaboration), Phys. Lett.B. 655, 104(2007) (The STAR Collaboration), Phys. Rev.Lett. 108, 072301(2004) (The STAR Collaboration), arXiv:0909.0566[nucl-ex] Fugacity ξ = 8.3 Size τ 0 = 9.9 (fm/c) R 0 =18.0 ( fm ) In preparation Sun and Chen
9
Yields of light nucleus H. Agakishiev, et al. (Star Collaboration) Nature473 (2011) 353. L.Xue and Y.G.Ma, et al. PRC85,064912. 2012 In preparation Sun and Chen
10
Ratio A.Andronic, P.Braun-Munzinger,J.Stchel, Phys. Lett.B. 673, 142-145 (2009) In preparation Sun and Chen
11
Physics with strangeness 1.Signal for QGP 2.Test QCD and Nature of nuclear force 3.De-confined Phase transition
12
Yields of Hypertriton and Di-Lambda with S=-2 H. Garcilazo et.al, PRL 012503(2013) D=0.086 He3=12.9E-5 In preparation Sun and Chen
13
Summary and outlook Coalescence model is a useful tool to describe the light nucleus production at relativistic HIC’s and extract freeze-out information H-dibaryon yield at RHIC is between that of d and 3 He It is interesting to see the HBT correlation….. This method is easy to extend to quark level to investigate hardronization
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.