Download presentation
Published byOswin Turner Modified over 9 years ago
1
What are FPGA Power Management Design Techniques?
2
Objectives After completing this module, you will be able to:
Explain why you should target as much of the hard IP as possible Describe how your design’s power consumption is dependent on your use of control signals Explain how some common design techniques can improve your design’s power consumption Use the newest architecture features to improve your design’s power consumption
3
Goal: Reduce Power Consumption
Reduce design size Reduce the logic and routing resources your design uses Manage which logic resources are used Instantiate and properly infer the best design resources Manage what control signals your design will use Don’t trust your synthesis results…manage the results
4
Low Power Design Techniques Power Estimation Tools
Hard-IP Blocks Product Architecture Dedicated Hard IP SW Power Optimization Process Technology Low Power Design Techniques Power Estimation Tools Dedicated Hard-IP Reduces Static Power Minimum transistor count Reduces Dynamic Power Metal Interconnects vs. Metal and programmable interconnects Reduced trace lengths Static and dynamic power is minimized by using Hard-IP
5
Use the Smallest Device Possible
Look for opportunities to reduce logic Time slicing of logic functions (2X frequency, ½ logic) In general, dynamic power improves due to more than 2X capacitance drop Move functions to dedicated hardware resources State machinesBRAMs CountersDSP48s Registers SRLs BRAMs LUTRAMs
6
Tactics to Reduce Power
One of the side benefits of reducing the number of LUTs and FFs your design uses is that it also allows you to improve design speed Do not over-constrain the design during synthesis Promotes logic replication Use your synthesis options carefully The 6-input LUT allows you to pack more logic into a LUT However, synthesis tools cannot remove added pipeline registers If your design is migrating from another FPGA you may need to remove added pipeline registers
7
Control Signals Problems
Instantiation of primitives and cores Gate-level connection of UNISIM and core primitives dictates control signal usage Be aware that some IP available from the CORE Generator does not necessarily follow these guidelines Make certain that you can share the control signals between your design and your COREs Synthesis optimization Synthesis may choose to build a control signal for logic optimization This will be a problem if the control signal has a high fanout
8
Avoid Active-Low Control Signals
Active-low control signals can produce sub-optimal results Control ports on registers are active-high Hierarchical design and design re-use can propagate bad design practices (if the design uses active-low control signals) This results in… More LUTs and routing being used than necessary This requires additional inverters at all lower leaf levels Worse timing and power Physical synthesis, design hierarchy, and incremental design practices Can change control sets from the original specifications (be careful) Global or logic optimization synthesis settings may choose to build a control signal for logic optimization
9
Use Active-High Control Signals
Flip-Flop The inverters cannot be combined into the same slice This consumes more power and makes timing difficult Hierarchical design methods can proliferate LUT usage on active-low control signals
10
Design Tips FF1 Suggestions for faster and smaller designs
Use synchronous Set/Reset whenever possible Use active-high CE and Set/Reset (no local inverter for secondary control signals) Try to build your design with as few control signals as possible Rules to recognize Clocks and asynchronous set/resets always connect to the control port of the FF Asynchronous sets/resets have priority access to the control ports over synchronous sets/resets Clock enables and synchronous set/resets can become control signals D Q CE CK SR ● ● ● FF8 D Q CE CK SR
11
Minimizing the Use of DCMs or PLLs
Case A – Embedded DCM In-1 In-x In-1 In-x Case B – External DCM DCM DCM or PLL Logic and Flip-flops DCMs are a limited resource DCMs consume a lot of power Using fewer DCMs saves global clock buffers Pulling buried DCMs or PLLs up to the top level reduces power
12
Reducing Clock and Block Activity
Use BUFGMUX to shutoff global clock when possible Reduces switching of circuit Use BUFCE or BUFHCE to dynamically gate a clock Saves routing Use local clock enables to eliminate extra FF/BRAM/DSP toggling This will save routing resources FF/BRAM/DSP BUFGMUX BUFGCE Turning a resource off saves dynamic power
13
Summary Reduce your design size
Target the dedicate IP as much as possible Hopefully, this will help you target as small a device as possible Do not over-constrain your design (forces logic replication) Remove unnecessary pipeline stages (especially if migrating a design) Minimize your design’s control signals Understand the control signals needed by your COREs Share these control signals with the rest of your design, if possible Use active-high control signals Use synchronous sets/resets Minimize DCM or PLL use in lower power applications Use the BUFGMUX, BUFCE, and BUFHCE primitives to reduce unnecessary toggling and dynamic power consumption
14
Where Can I Learn More? Xilinx online documents
Spartan-6 FPGA Power Management User Guide, UG394 Introduces the Suspend and Hibernate modes Describes the necessary voltage supplies Introduces the low-power (-1L) devices Describes the Power-On and Power-Down behavior Power Estimation options are discussed Power Consumption in 65 nm FPGAs, WP246 Very useful resource to clarify this presentation
15
Where Can I Learn More? Xilinx Education Services courses Designing with Spartan-6 and Virtex-6 Device Families course How to get the most out of both device families How to build the best HDL code for your FPGA design How to optimize your design for Spartan-6 and/or Virtex-6 How to take advantage of the newest device features Free Video Based Training How Do I Plan to Power My FPGA? Power Estimation What are the Spartan-6 Power Management Features? What are the Virtex-6 Power Management Features? What are FPGA Power Management HDL Coding Techniques?
16
Trademark Information
Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes. Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design. Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design. THE DESIGN IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY. The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk. © 2012 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.