Download presentation
Presentation is loading. Please wait.
Published byShannon Golden Modified over 9 years ago
1
Vertical Launch UAV Project Plan
2
∞ Construct an unmanned aerial vehicle (UAV) with a camera payload ∞ UAV must autonomously navigate with real-time video feed to ground station ∞ UAV must utilize a pneumatic vertical launch system
3
∞ Constraints ∞ Wing Design ∞Airfoil Selection ∞2 Piece Assembly ∞Materials Selection ∞Composite vs. Film Covering ∞ Landing System ∞Belly Land (FR) ∞ Tail ∞ Fuselage ∞Camera Considerations Modified Byron’s Pipe Dream Design
4
∞ Trade-off ∞Gas ∞Electric ∞ Propulsion Related Requirements ∞40-50 kt cruise ∞2 hour endurance ∞ Possible Solutions ∞Hacker ∞AXI Gold 5330 ∞ Propeller Hacker A60 L Series AXI Gold 5330
5
∞ XFLR5 ∞Methods ∞Vortex Lattice ∞Lifting Line ∞Output ∞Cl, Cd ∞Very efficient for low Reynolds Numbers ∞ Structures Spreadsheet ∞Mike Garton ∞ MotoCalc 8 ∞Engine Requirements
6
∞ Launch System ∞Attachment ∞ Avionics ∞Autopilot switchover
7
∞ Endurance ∞Weight ∞Power ∞ Size – Humvee Capacity ∞ Launch Sequence ∞Aircraft-Launch System Attachment ∞Control ∞Structural Integrity
8
∞ Piston and Casing ∞ Cradle and Carriage ∞ Collapsible Legs ∞ Pneumatic System
9
∞ Encased piston tube ∞ Magnetic piston ∞ Rubber piston stop
10
∞ Magnetic carriage ∞ Carriage slides along casing above piston ∞ Cradle mounted on carriage ∞ Slot for hook attachment on plane
11
∞ Requirements: ∞To fit within the back cargo hold of a small Humvee ∞Assemble within ~5 min ∞Design Solution: ∞A compact rod-less pneumatic slide ∞Collapsible stabilizing legs ∞Launch from the ground
13
∞ Design Specifications: ∞Plane weight 20 lbs ∞100 psi air pressure ∞Final launch height of 100 ft ∞ Using an Excel sheet to predict forces ∞Determine: ∞Air tank size ∞Valve size ∞Piston stroke length ∞Etc.
14
∞ Testing ∞Pneumatics ∞Can we launch a 20 lb plane with a 100psi of air to a 100ft? ∞If not what can we do? ∞Actual field tests with a test plane ∞ Integration ∞Plane cradle ∞Autopilot control
15
AutopilotVideo Ground Station
16
∞ Autopilot System must: ∞Be capable of autonomously navigating using waypoint navigation ∞Support a vertical pneumatic launch ∞Be capable of monitoring and controlling all systems necessary for flight ∞Support manual-override control ∞Be capable of transmitting real-time flight data to the ground control station
17
∞ Prime Concerns: ∞GPS, Inertial Measurement Unit, Compass, Gyroscope modules ∞Ability to interface with aircraft systems ∞Customization for launch and landing sequence ∞Cost
18
∞ Video System must: ∞Return real-time video to a base station ∞Be able to distinguish a 6” target at 100’ ∞Be capable of a minimum 30 minutes of operation ∞Be designed in a “modular” fashion
19
∞ Industrial Box style camera ∞ Able to be customized based on lens ∞ Vari-focal Auto-Iris Lens ∞ Manual adjustable focal length 100 ft 83 ft X / 83 pixels per foot 45° 70° 100 ft 140 ft X / 140 pixels per foot
20
∞Ground Station must: ∞Display real-time video as transmitted from the onboard camera ∞Provide controls necessary for manual override ∞Be capable of transmitting and receiving flight data to the onboard autopilot system ∞Be mobile and have the ability to be transported in the back of a military humvee
21
∞ Separate displays for video and flight data ∞ Components chosen based on onboard systems ∞ Mobile power source based upon requirements of ground station components
22
∞ Launch to cruise transition ∞ Data transmission and reception range ∞ Flight time
23
∞ Vertical Launch ∞ How/When does main autopilot take over? ∞ Customize autopilot for launch
24
∞ Range above 10 miles becomes problematic ∞ Using a directional antenna presents problems ∞ Omni-directional antenna – power consumption problems ∞ Planning on approximately 5W transmitter for video system ∞ Independent transmitter for video system Radius: x Power Required: y Radius: 2x Power Required: y 2 Radius: 3x Power Required: y 3
25
∞ Original flight time requested by Lockheed Martin: 2hrs ∞ Power consumption for this length of time is problematic ∞More Batteries = More Weight ∞ Control subsystem power consumption
26
∞ Project Plan – Sept 27, 2008 ∞ Initial design of each component – Oct 15, 2008 ∞ Physical system build complete – Nov 1, 2008 ∞ Integration of rail launch and aircraft – Nov 30, 2008 ∞ Begin testing of autopilot system – Nov 30, 2008 ∞ Testing of airplane and launch system – Dec 1, 2008 ∞ Final draft plan – Dec 15, 2008
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.