Presentation is loading. Please wait.

Presentation is loading. Please wait.

A CsI(Tl) Dark Matter Search Experiment - KIMS -

Similar presentations


Presentation on theme: "A CsI(Tl) Dark Matter Search Experiment - KIMS -"— Presentation transcript:

1 A CsI(Tl) Dark Matter Search Experiment - KIMS -
Korean Invisible Mass Search Yeongduk Kim Sejong University, Seoul, Korea IDM 2002 meeting, Sep 5

2 Collaborators Seoul National Univ. : J.M.Choi, R.K.Jain, S.C.Kim, S.K.Kim*, T.Y.Kim, H.S. Lee, S.E. Lee, H..Park, H.Y.Yang, M.S.Yang Sejong Univ. : W.K.Kang, J.I. Lee, D.S.Lim, Y.D.Kim, Yonsei Univ. : J.Hwang, H.J.Kim, Y.J.Kwon Iwha Womans Univ. : I.S.Han, E.K.Lee, I.H. Park SeongKyunKwan Univ. : I.Yu Chonbuk National Univ. : S.Y.Choi KAIST : P.Ko Univ. of Maryland : M.H.Lee, E.S.Seo National Taiwan Univ., : H.B.Li, C.H.Tang, M.Z.Wang Academia Cinica : W.P.Lai, H.T. Wong Inst. Of High Energy Physics : J.Li, Y.Liu, Q.Yue Inst. Of Atomic Energy : B.Xin, Z.Y.Zhou Tsinghua University : J. Zhu * PI

3 Outline CsI(Tl) crystals Underground site Studies on background reduction Perspectives Summary

4 Why CsI(Tl) Crystal ? Advantage Disadvantages
High light yield ~50,000/MeV Pulse shape discrimination Easy fabrication and handling High mass number(both Cs and I) SI + SD CsI(Tl) NaI(Tl) Density(g/cm3) Decay Time(ns) ~ ~230 Peak emission(nm) Hygroscopicity slight strong Disadvantages Emission spectra does not match with normal bi-alkali PMT 137Cs(t1/2 ~30y) ,134Cs(t1/2 ~2y) may be problematic

5 Low energy signal with CsI(Tl)
3” Green Extended RbCs PMT (Electron Tubes) Digital Oscilloscope with 10ns bin Large crystal (7x7x30cm) : ~ 4.5 p.e./keV Small crystal(3x3x3cm) : ~ 6 p.e./keV

6 Response of CsI(Tl) with elastically scattered neutron
CsI(Na) has spurious events due to surface effect 2 keV threshold  ~ 10 keV recoil energy

7 Pulse shape discrimination at ~ keV energy
Nuclear recoil vs gamma events Mean time for each events for each photoelectrons in an event 4<E<10 keV

8 Comparison of PSD power
NaI(Tl) CsI(Tl) Ideal detector  ~ 1,  ~ 0 K << 1 S B S B cut

9 Underground Site Location : minimum 350 m underground
Access tunnel(1.4km) 350m Laboratory Power plant

10

11 134Cs (artificial+133Cs(n,gamma)) 87Rb (natural)
Background of CsI(Tl) 137Cs (artificial) 134Cs (artificial+133Cs(n,gamma)) 87Rb (natural) Single Crystal (~10 kg) ~10keV 87Rb cpd/1ppb HR ICP-MASS 137Cs cpd/1mBq/kg HPGe 134Cs cpd/1mBq/kg “ Pollucite(raw material for Cs) contains < 8 mBq/kg of 137Cs

12 Crystals w/o selection of CsI powder (1)
137Cs Dominating crystal 8.9 kg day data Geant 4 Simulation 137Cs 155mBq/kg 134Cs ~35mBq/kg 87Rb 3.9 ppb (ICP-MASS)

13 CsI(Tl) from IHEP(China)
Crystals w/o selection of CsI powder (2) 87Rb Dominating crystal CsI(Tl) from IHEP(China) 137Cs 13.3mBq/kg 134Cs 54.2 mBq/kg 87Rb 203 ppb (ICP-MASS)

14 Selection of CsI powder from various vendors
Crystals CsOH CsNO3 CsMnO4 ~ 3mBq/kg CsI Powders Small samples 137Cs ~14mBq/kg Rb ~ 21 ppb Chemetall Selected 137Cs 87Rb

15 Crystals with selection of CsI powder
1st Demonstration of Reducing Bacground of CsI(Tl) by selecting powder. Should reduce further. Powder  Crystal 137Cs ± ±2.5 mBq/kg 134Cs ± ± 4.4 87Rb ppb (?) BG(~10 keV) 20.0 cpd 21 cpd

16

17 Water Samples “Purified” “Normal” Water is main source ! “Ultra-pure”
A large amount of water used for extraction Of Cs (Chemetall) Water samples with HPGe – Precipitation with AMP (Ammonium Molybdophosphate) 137Cs(“Normal water”) >> 137Cs(“Purified”) ~ 20 times “Purified” “Normal” Water is main source ! “Ultra-pure”

18 CsI powder with “Purified” water
CsI powder with only “purified” water in a production scale. CsI powder Crystal “Normal” water  ±  7 cpd (5.4 cpd expected) “Purified” water  ±  cpd(Expected) Factor 3 reduction of 137Cs with “Purified” water

19 Rb reduction by Recrystallization
CsI solubility in water is very high. Recrystallization is done at slightly lower temperature from saturation point. 20 ppb powder  ~ 1 ppb (< 1cpd) Crystal growing by Bridgmann reduced Rb by about 25%

20 Summary of Internal Background Reduction
W P C Crystals W/O Selection Purified Water P C Normal Water

21 Cosmic rays : ~ 10-4 relative to the sea level
External background Cosmic rays : ~ 10-4 relative to the sea level The rock composition (ICP-MASS) 238U ~ 4.8 ppm, 232Th ~ 6 ppm, 40K ~ 4 ppm With a shielding of 15cm Pb(Boliden) + 10cm Cu(OFHC)  Can be controlled < cpd based a MC simulation study (GEANT4)

22 Neutron Background at underground BC501A liquid scintillator
Neutron Flux ~ 4x10-5 /cm2/sec Mainly from (alpha,n) reaction GEANT4 simulation  Can be controlled <0.001 cpd 30cm LSC (Outside Shielding) + 20cm LSC(Inside Shielding)

23 Shielding Structure Cosmic Muon Veto

24 Neutron detector inside Copper shielding
Po-Be neutron source 20cm BC501A  Neutron tagging efficiency > 75%

25 Sensitivity (Spin-Independent)
After 1 year data taking with 100 kg CsI(Tl) 2 keV threshold 3 count/(kev kg day) CDMS Limit DAMA

26 Summary Extensive R&D on CsI(Tl) crystal has been carried out
Pulse shape discrimination from -rays Main source of 137Cs contamination due to impure water. Rb reduction down to ~1ppb achieved.  < 5cpd from internal background. Shielding capable of 250 kg of CsI(Tl) under construction. Environmental background : small enough Large (n,gamma) separable LSC inside shielding is tested. Perspectives ~100 kg CsI(Tl) crystal within 1 year 1 year data taking will cover DAMA region


Download ppt "A CsI(Tl) Dark Matter Search Experiment - KIMS -"

Similar presentations


Ads by Google