Download presentation
Presentation is loading. Please wait.
Published byLee Lloyd Modified over 9 years ago
1
EE3561_Unit 6(c)AL-DHAIFALLAH14351 EE 3561 : Computational Methods Unit 6 Numerical Differentiation Dr. Mujahed AlDhaifallah ( Term 342)
2
EE3561_Unit 6(c)AL-DHAIFALLAH14352 Lecture 17 Numerical Differentiation First order derivatives High order derivatives Richardson Extrapolation Examples
3
EE3561_Unit 6(c)AL-DHAIFALLAH14353 Motivation How do you evaluate the derivative of a tabulated function. How do we determine the velocity and acceleration from tabulated measurements. Time (second) Displacemen t (meters) 030.1 548.2 1050.0 1540.2 Calculus is the mathematics of change. Because engineers must continuously deal with systems and processes that change, they always need to estimate the value of f '(x) for a given function f(x).. Standing in the heart of calculus are the mathematical concepts of differentiation and integration:
4
EE3561_Unit 6(c)AL-DHAIFALLAH14354 Recall Numerical differentiation and integration The derivative represents the rate of change of a dependent variable with respect to an independent variable. The difference approximation If x is allowed to approach zero, the difference becomes a derivative
5
EE3561_Unit 6(c)AL-DHAIFALLAH14355 Difference Formulas
6
EE3561_Unit 6(c)AL-DHAIFALLAH14356 Recall
7
EE3561_Unit 6(c)AL-DHAIFALLAH14357 Three formula
8
EE3561_Unit 6(c)AL-DHAIFALLAH14358 Forward Difference formula
9
EE3561_Unit 6(c)AL-DHAIFALLAH14359 Central Difference formula
10
EE3561_Unit 6(c)AL-DHAIFALLAH143510 The Three formula (revisited)
11
EE3561_Unit 6(c)AL-DHAIFALLAH143511 Higher Order Formulas
12
EE3561_Unit 6(c)AL-DHAIFALLAH143512 Other Higher Order Formulas
13
EE3561_Unit 6(c)AL-DHAIFALLAH143513 HIGH-ACCURACY DIFFERENTIATION FORMULAS The forward Taylor series expansion is: From this, we can write Substitute the second derivative approximation into the formula to yield: By collecting terms
14
EE3561_Unit 6(c)AL-DHAIFALLAH143514 HIGH-ACCURACY DIFFERENTIATION FORMULAS Inclusion of the 2nd derivative term has improved the accuracy to O(h 2 ). This is the forward divided difference formula for the first derivative.
15
EE3561_Unit 6(c)AL-DHAIFALLAH143515 Forward Formulas
16
EE3561_Unit 6(c)AL-DHAIFALLAH143516 Backward Formulas
17
EE3561_Unit 6(c)AL-DHAIFALLAH143517 Centered Formulas
18
EE3561_Unit 6(c)AL-DHAIFALLAH143518 Example Estimate f '(1) for f(x) = e x + x using the centered formula of O(h 4 ) with h = 0.25. Solution From Table 23.3:
19
EE3561_Unit 6(c)AL-DHAIFALLAH143519 substituting the values results in
20
EE3561_Unit 6(c)AL-DHAIFALLAH143520 Numerical Differentiation Richardson Extrapolation Examples
21
EE3561_Unit 6(c)AL-DHAIFALLAH143521 Richardson Extrapolation
22
EE3561_Unit 6(c)AL-DHAIFALLAH143522 Richardson Extrapolation
23
EE3561_Unit 6(c)AL-DHAIFALLAH143523 Richardson Extrapolation Table D(0,0)=Φ(h) D(1,0)=Φ(h/2)D(1,1) D(2,0)=Φ(h/4)D(2,1)D(2,2) D(3,0)=Φ(h/8)D(3,1)D(3,2)D(3,3)
24
EE3561_Unit 6(c)AL-DHAIFALLAH143524 Richardson Extrapolation Table
25
EE3561_Unit 6(c)AL-DHAIFALLAH143525 Example
26
EE3561_Unit 6(c)AL-DHAIFALLAH143526 Example First Column
27
EE3561_Unit 6(c)AL-DHAIFALLAH143527 Example Richardson Table
28
EE3561_Unit 6(c)AL-DHAIFALLAH143528 Example Richardson Table 1.0848 1.08991.09157 1.09111.09157 This is the best estimate of the derivative of the function All entries of the Richardson table are estimates of the derivative of the function. The first column are estimates using the central difference formula with different h.
29
EE3561_Unit 6(c)AL-DHAIFALLAH143529 Summary Several formulas are available to determine first order, second order or higher order derivatives Richardson Extrapolation provides high accuracy estimates of the first order derivative
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.