Presentation is loading. Please wait.

Presentation is loading. Please wait.

A G H 2010 Profesor Zdzis ł aw Bieniawski 1. 2 3.

Similar presentations


Presentation on theme: "A G H 2010 Profesor Zdzis ł aw Bieniawski 1. 2 3."— Presentation transcript:

1 A G H 2010 Profesor Zdzis ł aw Bieniawski 1

2 2

3 3

4 “Idea” #1 Badania polowe w Geoinżynierii 4

5 Plate jacking tests 5

6 Another well-known in situ test Large Flat Jack (LFJ) test 6

7 Other types of large in situ tests Tri-axial block test Coal mine pillar test 7

8 RMR versus Rock Mass Modulus E m from penetrometer tests (Galera 2005)

9 RMR versus ratio E mass /E intact (penetrometer data after Galera 2005)

10 10

11 Rock mass deformation Modulus (GPa) E MASS = 10 [(RMR - 10)/40] and for RMR > 50: E MASS = 2 RMR – 100 Latest correlations (Galera 2008): E MASS = 147 e [(RMR - 100)/24] - 0.2 RMR Alternatively for RMR < 50: E MASS = 0.09 RMR and for RMR > 50: E MASS = 0.09 RMR + 1.06 (RMR- 50 ) + 0.015 (RMR- 50 ) 2 Correlation coefficient: R = 0.89. 11

12 12

13 Rock Mass Modulus versus RMR and Q (check correlation)

14 14 Rock Mass Strength Kalamaras, 1995

15 Rock mass deformation Modulus Another correlation by Galera 2008: E MASS = E intact e [(RMR - 100)/36] For full range of RMR 15

16 Rock mass strength (MPa)  MASS =  c intact e [(RMR - 100)/24] Kalamaras [1995] As per the last correlation of Galera 2008: E MASS = E intact e [(RMR - 100)/36] it follows: E M  M E i  c 2/3 16

17 concerning Rock Mass Strength 17 This expression: E M  M E i  c is preferable to the Hoek – Brown criterion in which: m/m i = e [(RMR - 100)/28] and s = e [(RMR - 100)/9] Due to uncertainty of m i values and equating RMR with GSI 2/3 W a r n i n g !

18 Example of needed Rock Mechanics focus Mechanized excavation in Mining and Tunneling deserves special attention in Rock Mechanics today Consider the case of TBM tunneling: determination of rock mass excavability (TBM rate of advance) 18

19 19

20 20

21 21

22 22

23 World Record! The largest Tunnel Boring Machine (T B M) cannot function without Rock Mechanics! 23

24 Ratings for Rock Mass Excavability index (RME): Input parameters Uniaxial compressive strength of intact rock [0 – 25 points]  ci (MPa) < 55-3030-9090-180> 180 Ratings41425140 Drillability – Drilling Rate Index [0 – 15 points] DRI> 8080-6565-5050-40< 40 Ratings1510730 Discontinuities at excavation front [0 – 40 points] HomogeneityNo. of joints per metreOrientation versus tunnel axis HomogeneousMixed0-44-88-1515-30>30PerpendicularObliqueParallel Ratings 1005 2015053 0 Stand up Time [0 – 25 points] Hours< 55-2424-9696-192> 192 Ratings02101525 Groundwater inflow [0 – 5 points] litres/sec> 10070-10030-7010-30< 10 Ratings01245

25 Roof Span versus Stand Up Time as function of RMR and Q

26 Correlation between Rock Mass Excavability index (RME) and Average Rate of Advance (m/day) for Double Shield TBMs 26

27 Double Shield TBMs σ ci < 45 MPa

28 “Idea” #3 Maszyny tarczowe T B M 28

29 Badania polowe w geoinżynierii Profesor Profesor Z.T. Bieniawski A G H 2010 A G H 2010 Kraków Dziękuję za słuchanie


Download ppt "A G H 2010 Profesor Zdzis ł aw Bieniawski 1. 2 3."

Similar presentations


Ads by Google