Presentation is loading. Please wait.

Presentation is loading. Please wait.

Preview Multiple Choice Short Response Extended Response.

Similar presentations


Presentation on theme: "Preview Multiple Choice Short Response Extended Response."— Presentation transcript:

1 Preview Multiple Choice Short Response Extended Response

2 Multiple Choice Use the passage below to answer questions 1–2.
Two blocks of masses m1 and m2 are placed in contact with each other on a smooth, horizontal surface. Block m1 is on the left of block m2. A constant horizontal force F to the right is applied to m1. 1. What is the acceleration of the two blocks? A. C. B. D.

3 Multiple Choice Use the passage below to answer questions 1–2.
Two blocks of masses m1 and m2 are placed in contact with each other on a smooth, horizontal surface. Block m1 is on the left of block m2. A constant horizontal force F to the right is applied to m1. 1. What is the acceleration of the two blocks? A. C. B. D.

4 Multiple Choice, continued
Use the passage below to answer questions 1–2. Two blocks of masses m1 and m2 are placed in contact with each other on a smooth, horizontal surface. Block m1 is on the left of block m2. A constant horizontal force F to the right is applied to m1. 2. What is the horizontal force acting on m2? F. m1a G. m2a H. (m1 + m2)a J. m1m2a

5 Multiple Choice, continued
Use the passage below to answer questions 1–2. Two blocks of masses m1 and m2 are placed in contact with each other on a smooth, horizontal surface. Block m1 is on the left of block m2. A constant horizontal force F to the right is applied to m1. 2. What is the horizontal force acting on m2? F. m1a G. m2a H. (m1 + m2)a J. m1m2a

6 Multiple Choice, continued
3. A crate is pulled to the right with a force of 82.0 N, to the left with a force of 115 N, upward with a force of 565 N, and downward with a force of 236 N. Find the magnitude and direction of the net force on the crate. A N at 96° counterclockwise from the positive x-axis B N at 6° counterclockwise from the positive x-axis C x 102 at 96° counterclockwise from the positive x-axis D x 102 at 6° counterclockwise from the positive x-axis

7 Multiple Choice, continued
3. A crate is pulled to the right with a force of 82.0 N, to the left with a force of 115 N, upward with a force of 565 N, and downward with a force of 236 N. Find the magnitude and direction of the net force on the crate. A N at 96° counterclockwise from the positive x-axis B N at 6° counterclockwise from the positive x-axis C x 102 at 96° counterclockwise from the positive x-axis D x 102 at 6° counterclockwise from the positive x-axis

8 Multiple Choice, continued
4. A ball with a mass of m is thrown into the air, as shown in the figure below. What is the force exerted on Earth by the ball? A. mballg directed down B. mballg directed up C. mearthg directed down D. mearthg directed up

9 Multiple Choice, continued
4. A ball with a mass of m is thrown into the air, as shown in the figure below. What is the force exerted on Earth by the ball? A. mballg directed down B. mballg directed up C. mearthg directed down D. mearthg directed up

10 Multiple Choice, continued
5. A freight train has a mass of 1.5 x 107 kg. If the locomotive can exert a constant pull of 7.5 x 105 N, how long would it take to increase the speed of the train from rest to 85 km/h? (Disregard friction.) A. 4.7 x 102s B. 4.7s C. 5.0 x 10-2s D. 5.0 x 104s

11 Multiple Choice, continued
5. A freight train has a mass of 1.5 x 107 kg. If the locomotive can exert a constant pull of 7.5 x 105 N, how long would it take to increase the speed of the train from rest to 85 km/h? (Disregard friction.) A. 4.7 x 102s B. 4.7s C. 5.0 x 10-2s D. 5.0 x 104s

12 Multiple Choice, continued
Use the passage below to answer questions 6–7. A truck driver slams on the brakes and skids to a stop through a displacement Dx. 6. If the truck’s mass doubles, find the truck’s skidding distance in terms of Dx. (Hint: Increasing the mass increases the normal force.) A. Dx/4 B. Dx C. 2Dx D. 4Dx

13 Multiple Choice, continued
Use the passage below to answer questions 6–7. A truck driver slams on the brakes and skids to a stop through a displacement Dx. 6. If the truck’s mass doubles, find the truck’s skidding distance in terms of Dx. (Hint: Increasing the mass increases the normal force.) A. Dx/4 B. Dx C. 2Dx D. 4Dx

14 Multiple Choice, continued
Use the passage below to answer questions 6–7. A truck driver slams on the brakes and skids to a stop through a displacement Dx. 7. If the truck’s initial velocity were halved, what would be the truck’s skidding distance? A. Dx/4 B. Dx C. 2Dx D. 4Dx

15 Multiple Choice, continued
Use the passage below to answer questions 6–7. A truck driver slams on the brakes and skids to a stop through a displacement Dx. 7. If the truck’s initial velocity were halved, what would be the truck’s skidding distance? A. Dx/4 B. Dx C. 2Dx D. 4Dx

16 Multiple Choice, continued
Use the graph at right to answer questions 8–9. The graph shows the relationship between the applied force and the force of friction. 8. What is the relationship between the forces at point A? F. Fs=Fapplied G. Fk=Fapplied H. Fs<Fapplied I. Fk>Fapplied

17 Multiple Choice, continued
Use the graph at right to answer questions 8–9. The graph shows the relationship between the applied force and the force of friction. 8. What is the relationship between the forces at point A? F. Fs=Fapplied G. Fk=Fapplied H. Fs<Fapplied I. Fk>Fapplied

18 Multiple Choice, continued
Use the graph at right to answer questions 8–9. The graph shows the relationship between the applied force and the force of friction. 9. What is the relationship between the forces at point B? A. Fs, max=Fk B. Fk> Fs, max C. Fk>Fapplied D. Fk<Fapplied

19 Multiple Choice, continued
Use the graph at right to answer questions 8–9. The graph shows the relationship between the applied force and the force of friction. 9. What is the relationship between the forces at point B? A. Fs, max=Fk B. Fk> Fs, max C. Fk>Fapplied D. Fk<Fapplied

20 Short Response Base your answers to questions 10–12 on the
information below. A 3.00 kg ball is dropped from rest from the roof of a building m high.While the ball is falling, a horizontal wind exerts a constant force of 12.0 N on the ball. 10. How long does the ball take to hit the ground?

21 Short Response Base your answers to questions 10–12 on the
information below. A 3.00 kg ball is dropped from rest from the roof of a building m high.While the ball is falling, a horizontal wind exerts a constant force of 12.0 N on the ball. 10. How long does the ball take to hit the ground? Answer: 6.00 s

22 Short Response, continued
Base your answers to questions 10–12 on the information below. A 3.00 kg ball is dropped from rest from the roof of a building m high.While the ball is falling, a horizontal wind exerts a constant force of 12.0 N on the ball. 11. How far from the building does the ball hit the ground?

23 Short Response, continued
Base your answers to questions 10–12 on the information below. A 3.00 kg ball is dropped from rest from the roof of a building m high.While the ball is falling, a horizontal wind exerts a constant force of 12.0 N on the ball. 11. How far from the building does the ball hit the ground? Answer: 72.0 m

24 Short Response, continued
Base your answers to questions 10–12 on the information below. A 3.00 kg ball is dropped from rest from the roof of a building m high.While the ball is falling, a horizontal wind exerts a constant force of 12.0 N on the ball. 12. When the ball hits the ground, what is its speed?

25 Short Response, continued
Base your answers to questions 10–12 on the information below. A 3.00 kg ball is dropped from rest from the roof of a building m high.While the ball is falling, a horizontal wind exerts a constant force of 12.0 N on the ball. 12. When the ball hits the ground, what is its speed? Answer: 63.6 m/s

26 Short Response, continued
Base your answers to questions 13–15 on the passage. A crate rests on the horizontal bed of a pickup truck. For each situation described below, indicate the motion of the crate relative to the ground, the motion of the crate relative to the truck, and whether the crate will hit the front wall of the truck bed, the back wall, or neither. Disregard friction. 13. Starting at rest, the truck accelerates to the right.

27 Short Response, continued
Base your answers to questions 13–15 on the passage. A crate rests on the horizontal bed of a pickup truck. For each situation described below, indicate the motion of the crate relative to the ground, the motion of the crate relative to the truck, and whether the crate will hit the front wall of the truck bed, the back wall, or neither. Disregard friction. 13. Starting at rest, the truck accelerates to the right. Answer: at rest, moves to the left, hits back wall

28 Short Response, continued
Base your answers to questions 13–15 on the passage. A crate rests on the horizontal bed of a pickup truck. For each situation described below, indicate the motion of the crate relative to the ground, the motion of the crate relative to the truck, and whether the crate will hit the front wall of the truck bed, the back wall, or neither. Disregard friction. 14. The crate is at rest relative to the truck while the truck moves with a constant velocity to the right.

29 Short Response, continued
Base your answers to questions 13–15 on the passage. A crate rests on the horizontal bed of a pickup truck. For each situation described below, indicate the motion of the crate relative to the ground, the motion of the crate relative to the truck, and whether the crate will hit the front wall of the truck bed, the back wall, or neither. Disregard friction. 14. The crate is at rest relative to the truck while the truck moves with a constant velocity to the right. Answer: moves to the right, at rest, neither

30 Short Response, continued
Base your answers to questions 13–15 on the passage. A crate rests on the horizontal bed of a pickup truck. For each situation described below, indicate the motion of the crate relative to the ground, the motion of the crate relative to the truck, and whether the crate will hit the front wall of the truck bed, the back wall, or neither. Disregard friction. 15. The truck in item 14 slows down.

31 Short Response, continued
Base your answers to questions 13–15 on the passage. A crate rests on the horizontal bed of a pickup truck. For each situation described below, indicate the motion of the crate relative to the ground, the motion of the crate relative to the truck, and whether the crate will hit the front wall of the truck bed, the back wall, or neither. Disregard friction. 15. The truck in item 14 slows down. Answer: moves to the right, moves to the right, hits front wall

32 Extended Response 16. A student pulls a rope attached to a 10.0 kg wooden sled and moves the sled across dry snow. The student pulls with a force of 15.0 N at an angle of 45.0º. If mk between the sled and the snow is 0.040, what is the sled’s acceleration? Show your work.

33 Extended Response 16. A student pulls a rope attached to a 10.0 kg wooden sled and moves the sled across dry snow. The student pulls with a force of 15.0 N at an angle of 45.0º. If mk between the sled and the snow is 0.040, what is the sled’s acceleration? Show your work. Answer: 0.71 m/s2

34 Extended Response, continued
17. You can keep a 3 kg book from dropping by pushing it horizontally against a wall. Draw force diagrams, and identify all the forces involved. How do they combine to result in a zero net force? Will the force you must supply to hold the book up be different for different types of walls? Design a series of experiments to test your answer. Identify exactly which measurements will be necessary and what equipment you will need.

35 Extended Response, continued
17. You can keep a 3 kg book from dropping by pushing it horizontally against a wall. Draw force diagrams, and identify all the forces involved. How do they combine to result in a zero net force? Will the force you must supply to hold the book up be different for different types of walls? Design a series of experiments to test your answer. Identify exactly which measurements will be necessary and what equipment you will need. Answer: Plans should involve measuring forces such as weight, applied force, normal force, and friction.


Download ppt "Preview Multiple Choice Short Response Extended Response."

Similar presentations


Ads by Google