Download presentation
Published byEdith Simpson Modified over 9 years ago
1
Inexact Matching of ontology graphs using expectation maximization
Universidad Autónoma de Madrid -15 Enero 2010 Inexact Matching of ontology graphs using expectation maximization Prashant Doshi, Ravikanth Kolli, Christopher Thomas Web Semantics: Science, Services and Agents on the World Wide Web 2009 Keywords: ontology, matching, expectation-maximization
2
Agenda Introduction Expectation Maximization Ontology Schema Model
Universidad Autónoma de Madrid -15 Enero 2010 Agenda Introduction Expectation Maximization Ontology Schema Model Graph Matching with GEM Random sampling and Heuristics Computational complexity Initial Results Large ontologies Benchmarks Conclusions
3
Universidad Autónoma de Madrid -15 Enero 2010
Introduction Growing usefulness of semantic web based on the increasingly number of ontologies OWL and RDF are labeled-directed-graph ontology representation languages Formulation ‘Find the most likely map between the two ontologies’*
4
Expectation Maximization
Universidad Autónoma de Madrid -15 Enero 2010 Expectation Maximization Technique to find the maximum likelihood estimate of the underlying model from observed data in the presence of missing data. E-Step Formulation of the estimate M-Step Search for the maximum of the estimate Relaxed search using: GEM
5
Ontology Schema Model OWL y RDF (labeled directed graphs)
Universidad Autónoma de Madrid -15 Enero 2010 Ontology Schema Model OWL y RDF (labeled directed graphs) Labels are removed, constructing a bipartite graph.
6
Graph matching GEM Maximum likelyhood estimate problem
Universidad Autónoma de Madrid -15 Enero 2010 Graph matching GEM Maximum likelyhood estimate problem Hidden variables: mapping matrix Local search guided by GEM Search-Space
7
Universidad Autónoma de Madrid -15 Enero 2010
Graph matching GEM M* gives the maximum conditional probability of the data graph Od given Om. Only many-one matching Focused on homeomorphisms
8
Graph matching GEM MLE problem with respect to map hidden variables
9
Graph matching GEM Need to maximize:
10
Graph matching GEM Probability that xa is in correspondence with ya given the assignment model Each of the hidden variables
11
Graph matching GEM Graph constraints And Smith-Waterman
12
Graph matching GEM Exhaustive search not possible
Universidad Autónoma de Madrid -15 Enero 2010 Graph matching GEM Exhaustive search not possible Problem: local maxima Use K random models + heuristics If two classes are mapped, map their parents + Random restart
13
Computational complexity
Universidad Autónoma de Madrid -15 Enero 2010 Computational complexity SW technique is O(L2) EM mapping is O(K*(|Vm|*|Vd|)2 )
14
Universidad Autónoma de Madrid -15 Enero 2010
Initial Experiments
15
Universidad Autónoma de Madrid -15 Enero 2010
Large Ontologies
16
Universidad Autónoma de Madrid -15 Enero 2010
Benchmarks
17
Conclusions Structure and Syntactic vs External Resources
Universidad Autónoma de Madrid -15 Enero 2010 Conclusions Structure and Syntactic vs External Resources Weak performance: dissimilar names and structure Good performance: extensions and flattening Not scalable : partitioning and extension No longer GEM, but converges Future work: Markov Chain MonteCarlo methods Extensible algorithm: can include other aproaches
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.