Download presentation
Presentation is loading. Please wait.
Published byKristin Foster Modified over 9 years ago
1
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Institut für Physik der Atmosphäre On the Value of Radar-Derived Rainfall Assimilation on High-Resolution QPF Daniel Leuenberger 1, Christian Keil 2 and George Craig 2 1 MeteoSwiss, Zurich, Switzerland 2 DLR, Oberpfaffenhofen, Germany COSMO GM 2008, Cracow
2
2 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Introduction Convective-scale assimilation of radar rainfall data Latent Heat Nudging (LHN) Results of a 7 month test suite at MeteoSwiss What determines the impact of LHN on QPF?
3
3 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow ECMWF IFS MeteoSwiss Model Setup COSMO-7 6.6km, 60 levels Param. deep convection Assimilation of conv. obs. COSMO-2 2.2km, 60 levels Explicit deep convection Assimilation of conv. obs. and radar rainfall COSMO-2 Radar ~600 km
4
4 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Setup of Experiments 2.2km assimilation cycle with/without LHN Forecasts out to +12h, initialized at 00 and 12 UTC 11. June 2007 – 15. January 2008 (346 forecasts)
5
5 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Examples of Improvement 6-12h Precipitation Forecast (19.06.2007) Verifying Radar LHNNOLHNRadar LHNNOLHNRadar 0-6h Precipitation forecast (12.06.2007) Verifying Radar
6
6 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Verification against Radar 346 Forecasts, 11. June 2007 - 15. January 2008, hourly sums
7
7 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Verification against Radar (Summer) 9 Forecasts, 11. June - 19. July 2007, hourly sums
8
8 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Verification of other Variables Pa 330 325 320 335 315 Surface Pressure 12 18 00 Time UTC m/s 2.20 2.15 2.10 2.25 2.05 10m Wind speed 12 18 00 Time UTC deg 64 62 60 66 58 Wind direction 12 18 00 Time UTC RMS of 74 12UTC Forecasts (Reference: ca. 60 Swiss Sfc. Stations) NOLHN LHN
9
9 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Verification of other Variables 32 30 28 34 26 % Cloud cover 12 18 00 Time UTC 2.4 2.2 2.0 2.6 1.8 K 2m Temperature 12 18 00 Time UTC K 2.8 2.6 2.4 3.0 2.2 2m Dewp. Temperature 12 18 00 Time UTC RMS of 74 12UTC Forecasts (Reference: ca. 60 Swiss Sfc. Stations) NOLHN LHN
10
10 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow What determines the impact of LHN? Use high-resolution NWP ensemble (2.8km mesh size) Driven by regional COSMO-LEPS ensemble 10 members with LHN, 10 members without Different mesoscale environment in each member 3 differently forced convection cases forced frontal non-forced frontalairmass 31.July 200628. June 2006 12. July 2006
11
11 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Example: Airmass convection NOLHN 0.8 0.6 0.4 1.0 0.2 0.0 060912 15 18 21 00 Radar NWPEnsembleNWPEnsemble Time UTC Timelines of observed and simulated area-averaged surface rainfall LHN 0609 1215 18 21 00 Time UTC Assimilation mm Forecast
12
12 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Definition of Time Scales LHN impact factor LHN time scale LHN Convective time scale Done et al. (QJ 2006) F LHN time 0.5 1 LHN
13
13 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Stratification of Simulations Results suggest 2 different regimes: equilibrium situation: short c precipitation only redistributed short-lived impact of LHN 1 10 100 0.1 1 10 100 LHN [h] c [h] forced frontal, non-forced frontal airmass non-equilibrium situation: long c LHN triggers convection long lasting impact of LHN
14
14 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Findings LHN improves high-resolution NWP forecasts QPF improvement in the first 3-12h (dependent on score and rainfall intensity) Other variables slightly improved, particularly in summer More realistic rainfall input for soil moisture Impact on QPF dependent on Precipitation forcing (equilibrium vs. non-equilibrium) Life time of precipitation system (predictability!) Mesoscale environment of convection (e.g. stability) Extent of NWP model domain and radar data coverage
15
15 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Thank you for your attention
16
16 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow LHN Impact Factor forced frontal 0.5 1 0 -0.5 1.5 012 3 4 5 forecast hour F LHN non-forced frontal 012 3 4 5 forecast hour airmass 012 3 4 5 forecast hour
17
17 Value of Radar Assimilation for QPFdaniel.leuenberger@meteoswiss.ch COSMO GM 2008, Cracow Radar Rainfall Assimilation Latent Heat Nudging (LHN) Jones and Macpherson, 1997, Leuenberger and Rossa, 2007 Adjusts model temperature and moisture to match radar rainfall Modifications for advection of precipitation (DWD) Stephan et al., 2008 Jones, C. D. and B. Macpherson, 1997: A Latent Heat Nudging Scheme for the Assimilation of Precipitation Data into an Operational Mesoscale Model, Meteorol. Appl., 4, 269-277 Leuenberger, D. and A. Rossa, 2007: Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective storm, Meteorol. Atmos. Phys., 98, 195-215 Stephan, K., S. Klink and C. Schraff, 2008: Assimilation of radar derived rain rates into the convective scale model COSMO-DE at DWD, submitted to QJRS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.