Download presentation
Presentation is loading. Please wait.
Published byRandolf West Modified over 9 years ago
1
Effects of Uncertainty in Cloud Microphysics on Passive Microwave Rainfall Measurements
Ju-Hye Kim and Dong-Bin Shin* Department of Atmospheric Sciences Yonsei University, Seoul, Republic of Korea
2
Outline 1. Introduction (motivation)
Methodology (characteristics of different microphysics schemes) Impacts of microphysics on a-priori databases Impacts of microphysics on PMW rainfall retrievals Conclusions
3
Introduction Simulated TB RTM
Current physically-based PMW rainfall algorithms heavily rely on CRM simulations. Simulated TB RTM e.g., Plane-Parallel , MC models Forward models provide prior information Cloud water + DSD Rain water + DSD Snow + , DSD Graupel + , DSD Cloud ice + DSD Hail + , DSD Water Vapor Temperature Cloud Model * e.g., Goddard Cumulus Ensemble Model (GCE),. .... Assumptions in some parameters (e.g., microphysics)
4
(1st version, Shin & Kummerow, 2003)
Introduction CRM-based rainfall retrieval algorithms have been evolved to use CRMs and observations simultaneously. e.g., The parametric rainfall algorithm: Cloud model + TRMM PR/TMI observations (1st version, Shin & Kummerow, 2003) Simulated precipitation field TB computation Realistic set of 3-D geophysical parameters are created from combination of TRMM PR/TMI and CRM. Figure at left is a comparison of surface rainfall from TRMM PR and simulator. simulated observed Once 3-D geophysical parameters are constructed, TB can be computed for any current or planned sensor. Figure at right is a comparison of Tb from TRMM TMI and simulator. observed simulated
5
Obs. Tb vs Sim. Tb The liquid portion of the profile is matched, the CRMs consistently specify ice particles of an incorrect size and density, which in turn leads to lower than observed Tb. 10 GHz H 10 GHz V 19 GHz H A better choice would be to continue the development of the Cloud Resolving Model physics to insure that simulations properly match the observed relationship between ice scattering and the rainfall column. 19 GHz V 21 GHz v 37 GHz H 85 GHz H/V 37 GHz V Assumptions in microphysics still have great impacts on CRM+OBS.-based DBs.
6
Introduction Cloud Resolving Model Passive Microwave Simulations
Rainfall Observations TRMM field campaigns The Kwajalein Experiment (KWAJEX) The South China Sea Monsoon Experiment (SCSMEX) The TRMM Large-Scale Biosphere-Atmosphere Experiment in Amazonia (TRMM LBA)
7
Zhou et al. (2007) Lang et al. (2007) , Han et al. (2010)
used the GCE model to simulate China Sea Monsoon and compared their simulated cloud products with TRMM retrieval products Lang et al. (2007) , Han et al. (2010) Land et al. (2007) compared the calculated TBs and simulated reflectivities from cloud-radiative simulations (GCE model) of TRMM LBA domain with the direct observations of TRMM TMI and PR Han et al. (2010) also evaluated five cloud microphysical schemes in the MM5 using observations of TRMM TMI and PR Grecu and Olson (2006) constructed a-priori database from observation of TRMM PR and TMI only to reduce forward error related to cloud and radiative transfer calculations, and compared their retrieval results to products from GPROF version-6 operational algorithm Many studies pointed out that CRMs (mainly GCE model) tend to produce excessive ice particles above freezing level and it may bring wrong retrieval results in microwave remote sensing of precipitation.
8
TRMM Observation of Typhoon Sudal
Methodology Different Cloud Microphysics PLIN WSM6 Goddard Thompson WDM6 Morrison TRMM Observation of Typhoon Sudal Typhoon Jangmi Simulations with WRF model (V3.1) 36522 36532 Parametric rainfall algorithm Shin and Kummerow (2003) Masunaga and Kummerow (2005) Kummerow et al. (2011) Six kinds of a-priori rainfall databases !
9
Prognostic variable of Single-moment scheme
PLIN WSM6 Goddard Thompson WDM6 Morrison Ty Jangmi Simulation with WRF model Single-Moment + Ns, Ng, Nr + Nccn, Nc, Nr + Ns, Ng, (Nc, Nr) Double-Moment Single moment schemes have differences in their cold rain processes (ice initiation, sedimentation property of solid particles). The microphysical processes related to ice-phase in the WDM6 are identical to the WSM6 scheme. WDM6 is double moment scheme for (only) warm rain processes and it predicts a cloud condensation nuclei (CCN) number concentration.
10
Typhoon Jangmi Simulation with Six different Microphysics schemes in the WRF Model
Similar distributions of rain and cloud water compared to WSM6 Reduction of snow near and above the melting layer More rain water and more ice particle than WSM6 Increased rain water below 5 km altitude Similar distribution of ice particle compared to WSM6 Much more snow Less rain water More snow Less rain water
11
Impacts of microphysics on a-priori databases
Correctness of simulated DBs PLIN Modified Radiative Indices WSM6 Petty (1994) Biggerstaff and Seo (2010) GCE THOM For the emission indices, TBs agree well. (The biases at 10 GHz channel from six databases are quite small, especially when the WSM6 and WDM6 schemes are used.) The simulated and observed databases show relatively large discrepancy at 85 GHz scattering index (Sm). WDM6 Simulated Indices MORR PM10 PM19 PM37 PM85 SM85 Observed Indices
12
Difference between Obs. and Simulated DBs
Representativeness of simulated DBs First EOF vector of Radiance indices Observed database shows a positive variation for attenuation indices and negative variation for the scattering index Simulated DBs generally follow the pattern of the Obs. DB. (smaller variability in 10, 19, and 37 GHz attenuation indices. Larger variability in 85 GHz attenuation index). / PLIN / Difference between Obs. and Simulated DBs / WSM6, WDM6 / / GCE, THOM, MORR /
13
Retrieved rainfall distributions for Ty Sudal
Impacts of microphysics on rainfall retrievals Orbit : 36537 Retrieved rainfall distributions for Ty Sudal PR 2A25 TMI 2A12
14
Scatter plots of PR vs retrieved rain rates for Ty Sudal
Retrieved rainfall PR rainfall
15
Retrieval statistics for different rain types (convective vs stratiform)
PR 2A23 Convective Mean Std dev True Retrived Corr Rms Bias Lin 27.82 15.03 36.46 24.82 0.44 36.25 (241.2) (85.1) WSM6 11.94 16.93 0.84 28.68 (240.2) (133.0) Goddard 12.84 15.74 0.85 28.74 (223.8) (116.7) Thompson 13.58 16.80 0.78 29.17 (214.8) (104.9) WDM6 12.78 16.87 0.89 27.18 (212.7) (117.7) Morrison 12.11 14.55 29.92 (247.1) (129.7) 2a12 7.84 7.24 0.54 38.63 (492.7) (254.9) Yellow : Convective Blue : Stratiform Stratiform Mean Std dev True Retrived Corr Rms Bias Lin 10.17 7.71 14.52 10.28 0.46 13.59 (176.3) -2.47 (32.0) WSM6 10.45 12.14 0.77 9.34 (89.4) 0.28 (2.7) Goddard 10.21 11.01 0.72 10.02 (98.1) 0.04 (0.4) Thompson 11.23 12.36 0.65 11.42 (101.7) 1.06 (9.4) WDM6 10.83 11.97 0.76 9.58 (88.5) 0.66 (6.1) Morrison 9.73 9.44 0.71 10.29 (105.8) -0.45 (4.6) 2a12 6.68 5.40 0.52 13.05 (195.4) -3.50 (52.4)
16
Comparison of averaged hydrometeor amounts
In the databases Cloud water Rain water Snow Graupel PLIN 0.26 (24.7%) 0.79 (75.3%) 0.07 (13.5%) 0.44 (86.5%) WSM6 0.19 (19.5%) 0.78 (80.5%) 0.28 (49.6%) 0.28 (50.4%) GCE 0.33 (29.5%) 0.79 (70.5%) 0.27 (54.5%) 0.23 (45.5%) THOM 0.31 (27.9%) 0.79 (72.1%) 0.79 (92.7%) 0.06 (7.3%) WDM6 0.11 (12.5%) 0.80 (87.5%) 0.16 (36.9%) 0.27 (63.1%) MORR 0.23 (22.5%) 0.77 (77.5%) 0.45 (73.4%) 0.16 (26.6%) PLIN ~ Too much graupel In the retrieval s Cloud water Rain water Snow Graupel PLIN 0.30 (25.1%) 0.90 (74.9%) 0.10 (22.0%) 0.37 (78.0%) WSM6 0.26 (22.0%) 0.91 (78.0%) 0.33 (60.3%) 0.21 (39.7%) GCE 0.37 (30.5%) 0.85 (69.5%) 0.45 (71.6%) 0.18 (28.4%) THOM 0.36 (27.1%) 0.97 (72.9%) 1.18 (94.8%) 0.07 (5.2%) WDM6 0.14 (12.4%) 1.00 (87.6%) 0.21 (42.9%) 0.28 (57.1%) MORR 0.28(21.9%) 0.98 (78.1%) 0.63 (75.5%) 0.20 (24.5%) THOM ~ Too much snow WDM6 ~ Increased rain water and reduced cloud water
17
Conclusions A-priori databases with six microphysics schemes are built by the WRF model V3.1 and TRMM PR observations and the impacts of the different microphysics on rainfall estimations are evaluated under the frame of parametric rainfall algorithm for extreme rain events (Typhoons). Major difference in six microphysics schemes exists in their cold rain processes (ice initiation, sedimentation property of solid particles). PLIN and THOM schemes produce too much graupel and snow, respectively, while the ice processes seem to be comparable to those from WSM6 and WDM6. This study suggests that uncertainties associated with cloud microphysics affect significantly PMW rainfall measurements (at least for extreme events). Both intensity and distribution of retrieved rainfalls are better represented by the WDM6, WSM6 and Goddard microphysics-based DBs. PLIN WSM6 Goddard Thompson WDM6 Morrison
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.