Download presentation
Presentation is loading. Please wait.
Published byHenry Stokes Modified over 9 years ago
1
數值方法 2008, Applied Mathematics NDHU 1 Spline interpolation
2
Spline A flexible piece of wood, hard rubber, or metal used in drawing curves Spline (mathematics) - Wikipedia, the free encyclopedia Spline (mathematics) - Wikipedia, the free encyclopedia 數值方法 2008, Applied Mathematics NDHU 2
3
Before computers were used, numerical calculations were done by hand. Functions such as the step function were used but polynomials were generally preferred. With the advent of computers, splines first replaced polynomials in interpolation, and then served in construction of smooth and flexible shapes in computer graphics. [5]step function [5] 數值方法 2008, Applied Mathematics NDHU 3
4
Control Polygon 數值方法 2008, Applied Mathematics NDHU 4
5
Spline Spline Pictures Spline Pictures 數值方法 2008, Applied Mathematics NDHU 5
6
Spline approximation Matlab Spline toolbox Input paired data (x,y) x_in : a set of horizontal coordinates Output: y_out, spline Interpolation at x_in 數值方法 2008, Applied Mathematics NDHU 6
7
7 Example I: three input arguments Input: x = 0:10; y = sin(x); x_in = 0:.25:10; Output: y_out = spline(x,y,x_in); Figure: plot(x,y,'o',x_in,y_out)
8
數值方法 2008, Applied Mathematics NDHU 8
9
Example II: Two input arguments 數值方法 2008, Applied Mathematics NDHU 9 x = -4:4; y = [0.15 1.12 2.36 2.36 1.46.49.06 0]; cs = spline(x,y); xx = linspace(-4,4,101); plot(x,y,'o'); plot( xx,ppval(cs,xx),'-‘); INPUT OUTPUT FIGURE Polynomial output
10
數值方法 2008, Applied Mathematics NDHU 10
11
Example III 2 D splines 數值方法 2008, Applied Mathematics NDHU 11
12
數值方法 2008, Applied Mathematics NDHU 12 2-D spline demo_2d_spline.m
13
數值方法 2008, Applied Mathematics NDHU 13 Polygon figure;hold on points = [0 0; 1 0; 1 1; 0 2; -1 1; -1 0; 0 -1; 0 -2].'; plot(points(1,:),points(2,:),'k'), axis([-2 2 -2.1 2.2]), grid off title('Control polygon')
14
數值方法 2008, Applied Mathematics NDHU 14 2D spline >> plot(points(1,:),points(2,:),'ok') >> fnplt( cscvn(points), 'g',1.5 )
15
CSCVN `Natural' or periodic interpolating cubic spline curve CS = CSCVN(POINTS) returns a parametric `natural' cubic spline that interpolates to the given points POINTS(:,i) at parameter values t(i), i=1,2,..., with t(i) chosen by Eugene Lee's centripetal scheme, i.e., as accumulated square root of chord-length. When first and last point coincide and there are no double points, then a parametric *periodic* cubic spline is constructed instead. However, double points result in corners. 數值方法 2008, Applied Mathematics NDHU 15
16
數值方法 2008, Applied Mathematics NDHU 16 For example, x1=[1 0 -1 0 1];x2=[0 1 0 -1 0]; plot( x1,x2, ' ok ');hold on curve = cscvn([x1;x2]) ; fnplt( curve )
17
數值方法 2008, Applied Mathematics NDHU 17 shows a (circular) curve through the four vertices of the standard diamond (because of the periodic boundary conditions enforced), while x1=[1 0 -1 -1 0 1];x2=[0 1 0 0 -1 0]; plot( x1,x2, ' ok ');hold on curve = cscvn([x1;x2]) ; fnplt( curve ) shows a corner at the double point as well as at the curve endpoint.
18
Spline A spline is composed of a set of piecewise polynomials Linear spline Quadratic spline Cubic spline 數值方法 2008, Applied Mathematics NDHU 18
19
Spline approximation Linear spline First order piecewise polynomials Quadratic spline Second order piecewise polynomials Cubic spline Cubic piecewise polynomials 數值方法 2008, Applied Mathematics NDHU 19
20
數值方法 2008, Applied Mathematics NDHU 20 L=length(x_in) n=length(x) for j=1:L for k=1:n if x(k) >= x_in(j) break end EXIT function y_out=my_spline1(x,y,x_in) i=k-1; a=(y(i+1)-y(i))/(x(i+1)-x(i)); y_out(j)=y(i)+a*(x_in(j)-x(i));
21
Procedure: my_spline1 Function y_out=my_spline(x,y,x_in) L=length(x_in); for j=1:N A. Find i that satisfies x(i) <= xx(i) <x(i+1) B. Set g to the slop of a line that connects (x(i),y(i)) and (x(i+1),y(i+1)). C. y_out(j) = y(i)+g*(x_in(j)-x(i)) 數值方法 2008, Applied Mathematics NDHU 21
22
Line interpolating 數值方法 2008, Applied Mathematics NDHU 22 (x(i),y(i)) (x(i+1),y(i+1)) (x_in(j),y_out(j)=?)
23
Linear spline 數值方法 2008, Applied Mathematics NDHU 23 x = 0:10; y = sin(x); x_in = 0:.25:10; y_out = my_spline1(x,y,x_in); plot(x,y,'o',x_in,y_out) my_spline1.m
24
數值方法 2008, Applied Mathematics NDHU 24
25
數值方法 2008, Applied Mathematics NDHU 25 Quadratic Spline
26
數值方法 2008, Applied Mathematics NDHU 26 Quadratic spline
27
數值方法 2008, Applied Mathematics NDHU 27 Quadratic splines Quadratic spline interpolation Determine all f i
28
數值方法 2008, Applied Mathematics NDHU 28 quadratic polynomial
29
Smoothness criteria The slopes of f i and f i+1 are identical at point P i 數值方法 2008, Applied Mathematics NDHU 29
30
數值方法 2008, Applied Mathematics NDHU 30 Smoothness Criteria Checking Check
31
Fitting criteria P i denotes point (x i y i ) f i passes points P i and P i+1 數值方法 2008, Applied Mathematics NDHU 31
32
數值方法 2008, Applied Mathematics NDHU 32 Fitting Criteria Checking - I Check
33
數值方法 2008, Applied Mathematics NDHU 33 Fitting Criteria Checking - II Check
34
數值方法 2008, Applied Mathematics NDHU 34 Recurrence relations
35
數值方法 2008, Applied Mathematics NDHU 35
36
數值方法 2008, Applied Mathematics NDHU 36 Equations for Implementation
37
數值方法 2008, Applied Mathematics NDHU 37 Re-indexing
38
數值方法 2008, Applied Mathematics NDHU 38 L=length(x_in) K=length(x) n=K-1; z(1)=0 for j=1:L for k=1:K if x(k) >= x_in(j) break end EXIT function y_out=my_spline1(x,y,x_in) i=k-1 a=(z(i+1)-z(i))/(x(i+1)-x(i));b=z(i);c=y(i) y_out(j)=a*(x_in(j)-x(i))^2+b*(x_in(j)-x(i)) +c; for i=1:n a=(y(i+1)-y(i))/(x(i+1)-x(i)) z(i+1)=2*a-z(i)
39
Procedure: my_spline2 Function y_out=my_spline2(x,y,x_in) n=length(x)-1;L=length(x_in); for i=1:n Determine z i+1 by eq(1) for j=1:L A. Find j that satisfies x(i) <= x_in(i) <x(i+1) B. substitute x_in(j) to eq(2) C. Set y_out(j) to the result of step B 數值方法 2008, Applied Mathematics NDHU 39
40
數值方法 2008, Applied Mathematics NDHU 40 Cubic spline
41
Criteria of cubic spline Fitting criteria First order smoothness criteria Second order smoothness criteria 數值方法 2008, Applied Mathematics NDHU 41
42
數值方法 2008, Applied Mathematics NDHU 42 Fitting criteria
43
Smoothness criteria I The slopes of f i and f i+1 are identical at point P i 數值方法 2008, Applied Mathematics NDHU 43
44
數值方法 2008, Applied Mathematics NDHU 44 Smoothness criteria II The curvatures of f i and f i+1 are identical at point P i Pi
45
Exercise 6 due to 10/29 Problem 3 of Ex 5 數值方法 2008, Applied Mathematics NDHU 45
46
Problem 2 Draw a flow chart to illustrate linear spline interpolation Implement the flow chart by matlab codes Give examples to test your matlab codes 數值方法 2008, Applied Mathematics NDHU 46
47
Problem 3 Draw a flow chart to illustrate quadratic spline interpolation Implement the flow chart by matlab codes Give examples to test your matlab codes 數值方法 2008, Applied Mathematics NDHU 47
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.