Download presentation
Presentation is loading. Please wait.
Published byBriana Wheeler Modified over 9 years ago
1
Introduction Introduction Rapid nucleosynthesis – models and sites Rapid nucleosynthesis – models and sites R-process under high neutron environment R-process under high neutron environment Fission in the r-process Fission in the r-process (n,f)- and -delayed fission (n,f)- and -delayed fission fission cycling fission cycling sf – predictions sf – predictions Theoretical Abundance of heavy nuclei Theoretical Abundance of heavy nuclei Superheavy nuclei and cosmochronometers Superheavy nuclei and cosmochronometers Conclusion Conclusion Models for spontaneous fission of heavy nuclei and nucleosynthesis of cosmo-chronometers in the r-process. Panov Igor (ITEP, NGU) Panov Igor (ITEP, NGU)
2
s-, r- processes SHE
3
nucleosynthesis beyond Fe-peak – r-process and s-process
4
4 r-process and s-process paths r-process and s-process paths supernovae NSM J.Truran winds Nuclear data for the r-process: ~6000 nuclei are involved 900 nuclei hasT12 > 1 hour
5
нуклеосинтез в реакциях с нейтронами (s-процесс): 105 106107129 Pd Ag Cd n << n n <10 12 Z=46 Z=47 Z=48 108 109 110 109110 111112 109 108 107 108 111 --
6
нуклеосинтез в реакциях с нейтронами (r-process): 126 127128129 Ag Cd In n (s-процесс: n << n n >10 22 n n <10 12 Z=47 Z=48 Z=49 130 Waiting point 129130131 130131 132133
7
SnII, ~ exp(-t/ ), < 10ms SnII, ~ 0 exp(-t/ hyd ), hyd < 10ms Merging of close binaries: NSNS, NSBH high n/seeds > 150, T 9 150, T 9 < 1, Y e < 0.1 Neutrino-induced r-process 4 He(, ’ n) 3 He Explosions on the NS surface Hot -wind, high entropy wind Hot -wind, high entropy wind – thermonuclear Sne, jets ? – thermonuclear Sne, jets ? Other objects and processes? 2. Main conditions for the r-process: (seeds); free neutrons; n/seeds; freezout 2. Main conditions for the r-process: (seeds); free neutrons; n/seeds; freezout Wasserburg, G., Busso, M., & Gallino, R. 1996, ApJ, L109 2 objects /scenario: Main r-process - Weak r-process 2 objects /scenario: Main r-process - Weak r-process
8
weak r-process SNIa - Truran & Cowan He-flash 1983 - Blinnikov, Panov, Ptytsin, Chechetkin 1995 SNII neutrino-induced r-process -Nadyozhin, Panov, Blinnikov A&A, 335, 1998 NSM-model, main r-process? Freiburghaus et al., AJL 525, 1999 NS+BH Janka, Wanajo, 20011 Blinnikov, S. I., et al. Pazh, 10, (1984) 422 Lattimer et al., AJ 213, 225 (1977)
9
fission 3. R-process under high neutron density environment – in NSM Observed N r
10
fission decay P P kn (k=0,1,2,3) Network calculations of the r-process (n, ) ( n) 10
12
Nuclear data for the r-process (up to 6000 nuclei ) beta-decay, Cross-sections and reaction rates (n,g), (n,f),.. beta-delayed processes P in, P df spontaneous fission, sf Mass distribution of fission products Alpha-decay, Nuclear masses and fission barriers Data base of common usage JINA - Joint Institute of Nuclear Astrophysics JINA - Joint Institute of Nuclear Astrophysics
13
Seeger, Fowler, et al. (1965) ; Ohnishi (1977) Thielemann, Metzinger, Klapdor, Zt.Phys., A309 (1983) 301. P df =100% Goriely et al. Astron. Astrophys. 346, 798–804 (1999) s.f. (Swiatecky) Panov et al., Nucl. Phys. A, 718 (2003) 647. (n,fission) vs P df I.Korneev et al. NIC-2006; Astronomy Letters, 66 (2008) 131 Y ff (Z,A) Kelic, et al., Phys. Lett. B. 616 (2005) 48 Y ff (Z,A) I.V. Panov, E. Kolbe, F.-K. Thielemann, T. Rauscher, B. Pfeiffer, K.-L. Kratz. NP A 747 (2005) 633 (n,fission) (n, ) P df G.Martinec-Pinedo et al, Progress in Particle and Nuclear Physics, 59 (2007) 199. (n,fission) vs P df Y.-Z. Qian, Astron. J. 569 (2002), p. L103. induced fission Kolbe, Langanke, Fuller. Phys Rev Lett. 2004 induced fission. I. Petermann et. al. NIC-2008; G.Martinec-Pinedo et al, Progr. in Particle and Nucl. Phys., 59 (2007) 199-205: (n,fission), P df, s.f., induced f. Panov et al. AA 2010 Panov et al. AA 2010 (n,fission) and (n, ) Petermann Martinec-Pinedo Langanke Panov Thielemann SHE AA2012 Panov, I.Korneev, Yu. Lutostansky, F.-K. Thielemann. Yad.Fiz. 2013. P di fission in the r-process and rates calculations 4. fission in the r-process and rates calculations
14
nf, n and rates comparison for U (left) and Cm (right) n , nf, n – Hauser-Feshbach predictions , df, - QRPA 15
15
6. Fission cycling during r-process for NSM conditions 6. Fission cycling during r-process for NSM conditions (t-duration time of the r-process; t=0 - initial composition) Neutron star mergers modelling: Rosswog et al. 1999 R-process: Panov I., Thielemann F.-K. AL, 30 (2004) 711
16
6. Fission cycling – fission fragments are involved in the r-process as new seeds
17
I.Petermann, A.Arcones, A.Keli´c, K.Langanke, G.Martínez-Pinedo, W.Schmidt, K-H.Hix, I. Panov, T. Rauscher, F.-K. Thielemann, N.Zinner, NIC-2008;
18
R=∫ i (t) / ∑ i ∫ i (t)dt
19
: B f Sn > 0. 20
20
7. Spontaneous fission rates Lg( sf ) ~ B f (Frankel&Metropolis,1947) : Lg( sf ) ~ B f (Frankel&Metropolis,1947) : Lg( sf ) = 33,3-7,77B f (exp) (1) Lg( sf ) = 33,3-7,77B f (exp) (1) Lg( sf ) =50,127-10,145B f (etfsi) (2) Lg( sf ) =50,127-10,145B f (etfsi) (2) Lg( sf ) = -1146,4 + 75,3Z 2 /A – 1,638(Z 2 /A) 2 + 0,012(Z 2 /A) 3 -(7,24 -0,095Z 2 /A)B f (3) Lg( sf ) = -1146,4 + 75,3Z 2 /A – 1,638(Z 2 /A) 2 + 0,012(Z 2 /A) 3 -(7,24 -0,095Z 2 /A)B f (3) Zagrebaev, Karpov 2012 (Swiatecki, 1957) Zagrebaev, Karpov 2012 (Swiatecki, 1957) Macro-micro model, Smolanchuk et al. 1997 (4) Macro-micro model, Smolanchuk et al. 1997 (4)
21
B f ETFSI- Mamdouh et al., NP 2001
22
R-process path and abundances Y A (Z,N) when duration r ~ 10s
23
n n < 10 22 cm -3, n < Squares – most abundant nuclei White dots: 10% < P df < 90%
24
25 n n < 10 12, n <<
25
JINR => Zagrebaev et al. Phys. Rev. C 84, 044617 (2011) A max (progenitors) ≈280
26
A(progenitors) ~ < 260
27
Final abundances Y Final abundances Y A, R ~ 0.4 – 4 10 9 years
28
Final abundance Y A when s.f. rates ~ f(B f )
29
Final Y A when s.f.rates - macro-micro model 30
30
Conclusions Conclusions It was shown that s.f. model applied to the r- process nucleosynthesis strongly influe in first turn on yields of nuclei-cosmochronometers It was shown that s.f. model applied to the r- process nucleosynthesis strongly influe in first turn on yields of nuclei-cosmochronometers Among tested models of spontaneous fission phenomenological model based on Swiatecki model and on macro-micro model predictions gave the better results in calculation of yields of nuclei–cosmochronometers Among tested models of spontaneous fission phenomenological model based on Swiatecki model and on macro-micro model predictions gave the better results in calculation of yields of nuclei–cosmochronometers Additionally to 232/235, 235/238 pairs of nuclei- cosmochronometers, pairs 232/244 or 238/244 can be considered Additionally to 232/235, 235/238 pairs of nuclei- cosmochronometers, pairs 232/244 or 238/244 can be considered The detailed investigation of decay chain is needed The detailed investigation of decay chain is needed
31
Thank you ! Participants for attention Participants for attention Blinnikov, Dolgov, Korneev, Thielemann for collaboration Blinnikov, Dolgov, Korneev, Thielemann for collaboration
34
Fission cycling – fission fragments are involved in the r-process as new seeds
37
B f TF Myers, Swiatecky 1999
38
Map of nuclei and field of rates
39
o - “солнечная” распространенность элементов синим цветом – расчет для сценария слияния нейтронных звезд в двойной системе ( Панов, Корнеев и Тилеманн. Письма в АЖ, т.34, 2008;)
40
Model, SS and Model, SS and metal-poor halo star CS 22892-052
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.